中考数学专题:一次函数中的构造等腰直角三角形法(原卷版).docx
《中考数学专题:一次函数中的构造等腰直角三角形法(原卷版).docx》由会员分享,可在线阅读,更多相关《中考数学专题:一次函数中的构造等腰直角三角形法(原卷版).docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题07 一次函数中的构造等腰直角三角形法 1、如图1,等腰直角三角形ABC中,ACB90,CBCA,直线ED经过点C,过A作ADED于点D,过B作BEED于点E求证:BECCDA;2、已如,在平面直角坐标系中,点A的坐标为(6,0)、点B的坐标为(0,8),点C在y轴上,作直线AC点B关于直线AC的对称点B刚好在x轴上,连接CB(1)写出点B的坐标,并求出直线AC对应的函数表达式;(2)点D在线段AC上,连接DB、DB、BB,当DBB是等腰直角三角形时,求点D坐标;(3)如图2,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂
2、线,交x轴于点Q,问点P运动几秒时ADQ是等腰三角形3、定义:在平面直角坐标系中,对于任意P(x1,y1),Q(x2,y2),若点M(x,y)满足x3(x1+x2),y3(y1+y2),则称点M是点P,Q的“美妙点”例如:点P(1,2),Q(2,1),当点M(x,y)满足x3(12)3,y3(2+1)9时,则点M(3,9)是点P,Q的“美妙点”(1)已知点A(1,3),B(3,3),C(2,2),请说明其中一点是另外两点的“美妙点”;(2)如图,已知点D是直线y+2上的一点点E(3,0),点M(x,y)是点D、E的“美妙点”求y与x的函数关系式;若直线DM与x轴相交于点F,当MEF为直角三角形
3、时,求点D的坐标4、如图,过点A(1,3)的一次函数ykx+6(k0)的图象分别与x轴,y轴相交于B,C两点(1)求k的值;(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E(i)若直线l把BOC分成面积比为1:2的两部分,求直线l的函数表达式;()连接AD,若ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标5、建立模型:如图1,等腰RtABC中,ABC90,CBBA,直线ED经过点B,过A作ADED于D,过C作CEED于E则易证ADBBEC这个模型我们称之为“一线三垂直”它可以把倾斜的线段AB和直角ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用模型应用:(
4、1)如图2,点A(0,4),点B(3,0),ABC是等腰直角三角形若ABC90,且点C在第一象限,求点C的坐标;若AB为直角边,求点C的坐标;(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PNn,已知点G在第一象限,且是直线y2x一6上的一点,若MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标6、如图1,直线l:yx+2与x轴交于点A,与y轴交于点B已知点C(2,0)(1)求出点A,点B的坐标(2)P是直线AB上一动点,且BOP和COP的面积相等,求点P坐标(3)如图2,平移直线l,分别交x轴,y轴于交于点A1B1,过
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 一次 函数 中的 构造 等腰 直角三角形 原卷版
限制150内