新课标高中数学必修1教案.docx
《新课标高中数学必修1教案.docx》由会员分享,可在线阅读,更多相关《新课标高中数学必修1教案.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新课标高中数学必修1教案新课标高中数学必修1教案 通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;一起看看新课标高中数学必修1教案!欢迎查阅! 新课标高中数学必修1教案1 教学目标 (1)掌握 与 ( )型的绝对值不等式的解法. (2)掌握 与 ( )型的绝对值不等式的解法. (3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力; (4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力; 教学重点: 型的不等式的解法; 教学难点:利用绝对值的意义分析、解决问题. 教学过程设计 教师活动 学生活动 设计意图 一、
2、导入新课 【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明? 【概括】 口答 绝对值的概念是解与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫 二、新课 【导入】2的绝对值等于几?2的绝对值等于几?绝对值等于2的数是谁?在数轴上表示出来 【讲述】求绝对值等于2的数可以用方程来表示,这样的方程叫做绝对值方程显然,它的解有二个,一个是2,另一个是2 【提问】如何解绝对值方程 【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示? 【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式的解集就是表示数轴上到原点的距离小于
3、2的点的集合 【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示? 【质疑】的解集有几部分?为什么也是它的解集? 【讲述】这个集合中的数都比2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分在解时容易出现只求出这部分解集,而丢掉这部解集的错误 【练习】解下列不等式: (1); (2) 【设问】如果在中的,也就是怎样解? 【点拨】可以把看成一个整体,也就是把看成,按照的解法来解 所以,原不等式的解集是 【设问】如果中的是,也就是怎样解? 【点拨】可以把看成一个整体,也就是把看成,按照的解法来解 ,或, 由得 由得 所以,原不等式的解集是
4、 口答画出数轴后在数轴上表示绝对值等于2的数 画出数轴,思考答案 不等式的解集表示为 画出数轴 思考答案 不等式的解集为 或表示为,或 笔答 (1) (2),或 笔答 笔答 根据绝对值的意义自然引出绝对值方程()的解法 由浅入深,循序渐进,在()型绝对值方程的基础上引出()型绝对值方程的解法 针对解()绝对值不等式学生常出现的情况,运用数轴质疑、解惑 落实会正确解出与()绝对值不等式的教学目标 在将看成一个整体的关键处点拨、启发,使学生主动地进行练习 继续强化将看成一个整体继续强化解不等式时不要犯丢掉这部分解的错误 三、课堂练习 解下列不等式: (1); (2) 笔答 (1); (2) 检查教
5、学目标落实情况 四、小结 的解集是;的解集是 解绝对值不等式注意不要丢掉这部分解集 或型的绝对值不等式,若把看成一个整体一个字母,就可以归结为或型绝对值不等式的解法 五、作业 1阅读课本含绝对值不等式解法 2习题2、3、4 课堂教学设计说明 1.抓住解 型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础. 2.在解 与 绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的. 3.针对学生解 ( )绝对值不等式容易出现丢掉 这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突
6、破,并在练习中纠正这个错误,以提高学生的运算能力. 新课标高中数学必修1教案2 教学目标: (1)理解子集、真子集、补集、两个集合相等概念; (2)了解全集、空集的意义, (3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力; (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集; (5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想; (6)培养学生用集合的观点分析问题、解决问题的能力. 教学重点:子集、补集的概念 教学难点:弄清元素与子集、属于与包含之间的区别 教学用具:幻
7、灯机 教学过程设计 (一)导入新课 上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识. 【提出问题】(投影打出) 已知 , , ,问: 1.哪些集合表示方法是列举法. 2.哪些集合表示方法是描述法. 3.将集M、集从集P用图示法表示. 4.分别说出各集合中的元素. 5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来. 6.集M中元素与集N有何关系.集M中元素与集P有何关系. 【找学生回答】 1.集合M和集合N;(口答) 2.集合P;(口答) 3.(笔练结合板演) 4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,
8、1.(口答) 5. , , , , , , , (笔练结合板演) 6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答) 【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题. (二)新授知识 1.子集 (1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。 记作: 读作:A包含于B或B包含A 当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A. 性质: (任何一个集合是它本身的子集
9、) (空集是任何集合的子集) 【置疑】能否把子集说成是由原来集合中的部分元素组成的集合? 【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合. 因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的. (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。 例: ,可见,集合 ,是指A、B的所有元素完全相同. (3)真子集:对于两个集合A与B,如
10、果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。 【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.” 集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B. 【提问】 (1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。 (2) 判断下列写法是否正确 A A A A 性质: (1)空集是任何非空集合的真子集。若 A ,且A ,则 A; (2)如果 , ,则 . 例1 写出集合 的所有子集,并指出其中哪些是它的真子集. 解:集合 的所有的子集是 , ,
11、, ,其中 , , 是 的真子集. 【注意】(1)子集与真子集符号的方向。 (2)易混符号 “ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,1 1,2,3 0与 :0是含有一个元素0的集合, 是不含任何元素的集合。 如: 0。不能写成 =0, 0 例2 见教材P8(解略) 例3 判断下列说法是否正确,如果不正确,请加以改正. (1) 表示空集; (2)空集是任何集合的真子集; (3) 不是 ; (4) 的所有子集是 ; (5)如果 且 ,那么B必是A的真子集; (6) 与 不能同时成立. 解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确; (2)不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 标高 数学 必修 教案
限制150内