(2022年整理)乘法分配律教学反思.docx
《(2022年整理)乘法分配律教学反思.docx》由会员分享,可在线阅读,更多相关《(2022年整理)乘法分配律教学反思.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、乘法分配律教学反思 作为一名人民老师,我们要在教学中快速成长,教学反思能很好的记录下我们的课堂经验,那么什么样的教学反思才是好的呢?下面是整理的乘法分配律教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。 乘法分配律教学反思1 乘法分配律是小学阶段学生比较难理解与叙述的运算定律,但的确又非常重要、运用广泛。在本节教学过程的设计上我采用了让孩子通过“联系实际、感知建模;分类整理,生成模型;发现规律,举例验证;表示规律,建构模型;概括规律,完善模型;应用规律,感受模型”的探索过程,完成本节的教学任务。在教学过程中,以突破乘法分配律的教学重点和难点为切入点,对本节课知识的学习起到了举足轻重的作用。根
2、据自己的教学教训,在平常的教学中,总是发现学生在学习完乘法分配律之后容易出现(a+b)c=ac+b的现象仔细研究其原因,其实是学生学的记的只是乘法分配律的外在形式,对公式只不过是表面肤浅的忘记,而没有真正理解乘法分配律内在的数学意义。因此,我就打破通过观察 发现 猜想 验证 概括的传统教学思路,除了在外在形式上认识规律(教材意图),又从乘法的意义入手,使学生进一步从算式意义方面得出了(a+b)c=ab+bc这样确凿无疑的结论。让学生对乘法分配律的理解不再只是停留在外在的“形”,而是又进入“质”的深化。这种教学建立在学生认知规律的基础之上,实现了有效的建立模型突破了本节的第一个难点。从课后作业可
3、以看出,这种教学效果明显好于以前。在突破本节第二个难点:乘法分配律容易跟乘法结合律混淆的现象时。敢于挑战自我,不再泛泛地讲两个规律的区别与联系,而采用反式教学写出25(48)=254+258的现象,让学生既懂得乘法结合律和分配律的区别,又找到了乘法分配律概念的重点。在本节课的练习设计上,力求有针对性、有坡度的知识延伸,出示扩展型的练习,对分配律的概念加以升华。这些方面,只是我对自己原来的教学在反思与对比中觉得是对我而言较为进步的一点点。但是,在实际的课堂操作中,整个教学过程也出现了许多不尽人意的地方。比如:课堂上由于紧强导致只顾自己思路,而忘了对学生的回答或知识的恰当与否做出及时评定。还有,恐
4、怕在规定时间内完不成任务,而把“总结”与“拓展”放错了位置;学生参与的积极性没有预想中那么高,可能与我相对缺乏激励性语言有关等等问题。深入思考,觉得还是自己的业务不够熟练,驾驭课堂能力低下而造成的。因此,我想:今后要从以下几方面努力:一、深入钻研,在挖掘教材上下功夫。二、多听课,学习别人长处,多查阅资料学习,提高自己的业务水平。最重要的是更新教学理念,在教学思路的“创新”上狠下功夫,让学生看到的天天都是“新”老师,甚至忘记“传统”形象,这是我最高的追求目标。 乘法分配律教学反思2 师:出示教学挂图并提问:从图上你知道什么?生:张阿姨买5件夹克衫和5条裤子,一共要付多少钱?师:能自己列式解答吗?
5、(教师巡视,学生解答)让用两种不同方法解答的学生分别板演。师:说说655+455这种解答方法是怎样想到的?生:先算买夹克衫和买裤子各用多少元?师:(65+45)5这种方法呢?生:先算买一套衣服用多少元?师:比较这两种方法,有什么不同和相同呢?生:想的方法不同导致列的算式不同,但结果相同师:结果相等的两个算式可以用什么连接?生:等号揭示:(65+45)5=655+455师:仔细观察等号两边的算式,它们有什么联系吗?(从数,运算符号思考)生:结果相等,都有三个数,5左边出现了1次,右边出现了两次,左边先加再乘,右边先乘再加师:等号左边先算什么?右边呢?生:等号左边是65加45的和乘5,右边是65乘
6、5的积加45乘5的积。师:你能模仿着写出几组这样的算式吗?学生试写学生列举验证,教师将学生列举的等式写在黑板上,并让学生说出等式两边的得数。师:还有很多同学想说,像这样的例子举得完吗?师:由此你想到些什么?生:这里有规律。师:我们可以用什么来表示这种普遍存在的规律呢?生:(字母、符号、文字)师:试着写一写吧生:(a+b)c=ac+bc(+)=+师:小结:像这样两个数的和与一个数相乘,也可以用这两个数分别与这个数相乘,再把他们的积相加,这就是乘法分配律。(指着算式说)顺着读,(任何事物都要从正反两面去看)反过来读乘法分配律反思:乘法分配律一课是苏教国标版教材四年级下册的内容,是在学生经过较长时间
7、的四则运算学习,对四则运算已有较多感性认识的基础上学习的。学生接触过加法、乘法的验算和口算等方面的知识,对此有较多的感性认识,这是学习乘法分配律的基础。教材安排这个运算律是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。教材有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律地认识由感性逐步发展到理性,合理地构建知识。课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察举例得出结论
8、”这一数学学习全过程。学生掌握了学习方法,就等于拿到了打开知识宝库地金钥匙。由于乘法分配律是本课教学难点。教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生联想到是否具有普遍性。从而得到猜想:是不是所有的三个数都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。本课从学生的学习情况来看,通过本课的学习不但掌握了乘法分配律的知识,更重要的是学会了数学方法,并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。 乘法分配律教学反思3 学生在前面的学习
9、中已经学习了一些有关运算律的知识,对加法交换律、结合律、乘法交换律、结合律有一定的了解和认识,这些都为本课的学习奠定了基础。本课的教学环节和前面学习运算律的教学基本相似,所以学生也有一定的学习方法和经验,所以乘法分配律的归纳和揭示还是比较顺利的。我重点是结合练习帮助学生进一步的认识乘法分配律的意义以及它与其他运算律的区别。特别是对几个数字的观察和比较以及等式两边的式子分别表示的意义等,通过这样的引导,加深学生对乘法分配律含义的理解,为后面的简便运算的学习奠定基础。相对于其他运算律的简便运算,应用乘法分配律进行简便运算,学生在实际的运用方面还是有一定困难的。教学中我是分层进行教学的。首先安排的是
10、最基本,学生直接根据乘法分配律就可以直接进行简便运算。在这个环节,我主要是通过练习加深学生对乘法分配律的理解和运用,特别是逆向的运用。接着,在练习环节进行一定的拓展和变化,通过观察、比较等方式,引导学生发现算式间的联系,从而能够灵活的运用运算律。在这个环节,我发现部分学生仍然是在逆向的运用上出现了一些问题。这可能也与学生的思维定势有关系。 乘法分配律教学反思4 乘法分配律是人教版数学第三单元的内容,它是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比
11、较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。但要做到让学生进行“探究、推理、自己总结规律”很难,因为上的是直播棵,为了突破难点,在备课时,我做足了功课,首先我从例题入手,把乘法分配律放在具体的情境中,结合学生已有的生活经验,学生发现解决问题策略很多,此题可以用两种方法解答:(1)(4+2)25;(2)425+225,通过比较,学
12、生知道了为什么:(4+2)25=425+225,经历了知识探究的过程,讲完例题后,又让学生通过发语音、课堂连麦的形式让举了许多这样的例子,提高了学生学习的积极性,每个例子不仅可放在具体情境中,也可借助乘法的意义让学生进一步理解,从而得出什么是“乘法的分配律及它的应用”,课堂取得了很好的效果。 乘法分配律教学反思5 曾经真的以为自己是一个很负责任的人:我爱我的学生,我爱我的数学教学,甚至可以为了我的学生与数学教学,放弃我个人的休息时间,为的只是我爱的学生能爱上我教的数学,能把数学学得很出色。然而为什么总是事与愿违,成效“背叛”了设想,作业“背叛”了课堂?一切显得那么捉襟见肘,“徒劳无功”成了我这
13、学期最大的感受,到底问题出在哪里呢?当我回想起教学中一点一滴的琐事,老师们交流时的经验之谈,再重新翻阅起一些理论书刊时,我似乎意识到自己其实早已经“背叛”了数学教学。“哦,简单,简单!”黄玄昶又乐滋滋地高高举起他的手,果然不出我所料,他的回答又正中我的下怀,这不正是我所期望的答案吗?说实话,开公开课我就喜欢像他这样的学生,积极举手发言,而且一步一步被我“引进”来,突出所谓的教学重点,攻克预设的教学难点,最后解决相应的问题,“看上去很美”,真的,经过我的“引导”,他能“自主探索”,寻求规律,最后消除疑问,这不是一件看上去很“完美”的事吗?可是“怎么又错了!”我真是纳闷,上课如此“高效”的人,怎么
14、作业就这么惨不忍睹?题目稍一拐弯,就转不过来了,曾经我把他定论为思维的灵活性不够,然而上完这堂利用乘法分配律进行简便运算后,经过反思与请教,我终于发现我错了。 乘法分配律教学反思6 记得曾经在教孩子们乘法分配律的时候,总是遇到很多问题,对于乘法分配律的应用不是很好,吐槽了很久,现在在教二年级的孩子的时候,我发现其实在二年级已经接触了这方面的知识,只是没有进行归纳而已。二年级的课本上有这样一种题型,如:(1)6x9=5x9+9=7x99=(2)9x4=9x3+9=9x59=(3)8x9=7x9+9=9x99=先计算,你发现了什么?我一看到这题,我就想到乘法分配律,但是在二年级刚接触乘法,不可能就
15、跟他们讲乘法分配律。我在上练习课的时候我特意把这题拿出来讲了,我想如果这里学生题解好了,对以后学习乘法分配律是有帮助的。在课堂上,我先让学生自己完成,第一题的第2,3个算式,他们是按照运算顺序来计算的,先算乘法,再算加法或减法,这个没有难度,而且他们根据第一题,后面的两题都不要做,直接写出了结果,每一题中的3个算式的结果是一样的。我就问他们,为什么会出现这样情况?学生就答不上来。我就举了个示范,6x9是6个9相加,5x9+9是5个9相加再加1个9,5个9加1个9是6个9,6个9相加就是6x9,所以5x9+9=6x9=54。学习了乘法的意义,对于这个他们能理解,只是想不到而已,那么7x99=,可
16、以交给孩子们完成,第(2)(3)题我也是让学生来说一说。另外我还补充了一题,6x714,我发现竟然有孩子会想到14就是2个7,6个7减去2个7就是4个7,就是4x7=28。特别棒! 乘法分配律教学反思7 1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。乘法分配率的结构特点,即两数的和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)25=425+225是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)25=425+225。2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。乘法结合律的特征是几个数连乘,而乘法分配律特征是两数
17、的和乘一个数或两个积的和。在练习中(40+4)25与(404)25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?3、让学生进行一题多解的练习,加深学生对乘法结合律与乘法分配律的理解。如:计算12588;10189你能用几种方法?12588竖式计算;125811;125(80+8);125(100-12);(100+25)88;(100+20+5)88等等。10189竖式计算;(
18、100+1)89;101(80+9);101(100-11);101(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。 乘法分配律教学反思8 教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用连接,即25(42)254252,从而通过比较等
19、号两边两个算式的不同与相同,概括出乘法分配律。当我在一个班按照此教学设计教学后,我发现效果并不理想,表现有两点:有些学生只是机械的记忆了乘法分配律的公式,例如看到3544不能想到3540354;由于没有真正理解乘法分配律的内涵,所以完全不能理解其逆应用以及当两个数的差乘一个数时应用乘法分配律。如:他们认为64643664(6436)64;265(1055)2651052655。针对此情况,我重新设计了教案。增加了一个问题:负责挖坑、种树的同学比负责抬水、浇水的同学多多少人?这样学生又列出另外两个算式,通过计算后用等号连接: 25(42)254252,接下来,我引导学生观察、对比两组算式,充分地
20、去发现相同点与不同点。这样一来,促使了学生去寻找事物之间的联系,抓住本质,寻找共同点,促进交流,顺利地实现了自我构建和知识创造。学生的发现自然也就更丰富、更有深度了:无论是两个数的和还是两个数的差去乘一位数,都可以先把他们与这个数分别相乘,再相加或者再相减。此外,我还引导学生从右到左的观察等式,尝试用乘法的意义去理解乘法分配律,即:4个25加2个25就等于(42)个25,4个25减2个25就等于(42)个25,这样帮助学生突破乘法分配律逆应用这个教学难点。我通过对两个班不同的教学设计,感受到:认真钻研教材,多动心思,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维
21、的灵活性,提供了更广阔的空间。 乘法分配律教学反思9 今年我“高升”了!从毕业开始,一直在一二年级的数学徘徊,今年“高升”到了四年级!得到消息后,先是兴奋,再是忐忑。兴奋的是终于能教大孩子了。忐忑的是能教了这些大孩子吗?于是每天像是刚工作时一样,每天手写备课、拎着凳子去听师傅的每一节课,不敢有丝毫怠慢。更忐忑的是接到通知,于老师要来听课,其中有我!于是马上请教我的师傅车老师,车老师认为乘法分配律是一节数学味很浓的课,而且是一节特别值得研究的课,于是决定讲这节课。经过初步备课,我发现乘法分配律的运用属于运算律中最有难度的部分,而且类型颇多,每一种都能让学生琢磨半天,这让我感觉这节课确实很有意思,
22、也很有挑战。因为从来没有执教过高年级,我决定先“拜访”名师。于是我上网搜视频,设计。当我看到葛丽霞老师的视频,我被惊艳了!课堂中的每个环节都让我感觉眼前一亮,几个精彩瞬间如“乘法分配律的探索过程、用字母表示法还有课的小结”仍记忆犹新,于是我决定就模仿葛丽霞老师的这节课。视频看了三遍,教案看了无数遍。于是就“拿来”了这节课。可是经过于老师的指导,我发现,我模仿的是教案的话,每一句话后面深意,每一句话的目的,我真的明白了吗?备课,备了教案,备了老师,却把最重要的要素学生,忘记了。没有找到学生的认知起点,没有探索到学生的易错点,难点。后来,与我的师傅车老师一起研究,对教案进行了重建,重建教案主要有以
23、下几个改进:1、形意结合。初次教学乘法分配律时,由于对教材的挖掘比较肤浅,在教学中,只是重视了对“两个数的和与一个数相乘,要用括号里的每一个加数分别与这个数相乘,再把积相加”这句话的理解,学生对乘法分配律的印象完全停留在外形上,根本不知道为什么要用括号里的每个加数分别与括号外的数相乘,结果他们在应用时,只会按照总结出的规律生搬硬套,全班竟有一半的人出现了问题;当课堂进行到乘法分配律的逆运用时,很多学生更是不知道该从何入手,课堂效果特差。于是,重建教案中,在引导学生发现规律时,不仅注意了等式两边的“外形”结构特点,即“两个数的和与一个数相乘,要用括号里的每一个加数分别与这个数相乘,再把积相加”,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 整理 乘法 分配律 教学 反思
限制150内