《金属的电导理论课件.ppt》由会员分享,可在线阅读,更多相关《金属的电导理论课件.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、金属的电导理论第1页,此课件共32页哦51分布函数和玻耳兹曼方程511分布函数法的概念 费米函数表述的是在统计平衡状态下,固体中的电子的分布规律。如果我们以波矢标志电子的运动状态,那么根据关系式(4-11),在波矢空间的体积元 内状态数目为:如果用表示费米函数(T表示温度),那么在体积元内的电子数就等于:(5-1)第2页,此课件共32页哦如果考虑单位体积内的电子数,即设单位体积内的电子数为:n=N/VC,那么由(5-1)式可以得到:(5-2)这种分布可以形象地表示为电子在K空间的密度分布,即表示在一定温度下,K空间某处电子密度的大小。第3页,此课件共32页哦在平衡状态分布时,由于因此分布密度对
2、于是对称的。而此时由于因此电流大小相等方向相反。即电流为零第4页,此课件共32页哦当在上述的平衡系统上外加一个恒定外场 时,很快会形成一个稳定电流密度,并且服从欧姆定律:(5-3)式中为电导率。这个稳定电流实际上反映了在稳定外场作用下,电子达到了一个新的定态统计分布定态统计分布状态。这种定态分布也可以用一个与平衡时相似的分布函数 来描述,即单位体积内在 中的电子数为:(5-4)第5页,此课件共32页哦由于电子的速度为 ,因此它们对于电流密度的贡献可以写为:(5-5)积分上式可得到总的电流密度为:(5-6)上式说明只要确定了分布函数,就可以直接计算电流密度。通过这种非平衡情况下的分布函数来研究电
3、子输运过程的方法,就是分布函数法。第6页,此课件共32页哦这里应注意的是,要准确地区别“平衡统计分布”与“定态统计分布”。平衡统计分布是指,宏观上电子处于相对静止状态,各处的状态密度相同。定态统计分布是指,宏观上电子做定向运动,各处状态密度不变。第7页,此课件共32页哦512玻耳茲曼方程玻耳茲曼方程是从考查分布函数如何随时间变化而确立的。分布函数的变化有两个来源:(1)漂移项。它是指由外界条件所引起的统计分布在K空间的“漂移漂移”。(2)碰撞项。它是指由于晶格原子的振动,或者是杂质的存在等原因,电子不断地发生从一个状态 到另一个状态 的跃迁。我们可以把这种运动状态的改变想象成与分子运动论中一个
4、分子遭受碰撞由速度变化为另一速度的情况相似。电子态的这种变化常称为散射散射。第8页,此课件共32页哦由量子力学可以知道,电子的运动速度与波矢是一一对应的,所以我们可以以实际位置坐标 和波矢 为变量组成相空间相空间在相空间中电子是以分布函数 来描述的,它代表t时刻在点 附近单位体积中一种自旋的电子数。所以t时刻在相空间体积元 中一种自旋的电子数是:第9页,此课件共32页哦随时间的总变化率应由三部分组成:(5-7)其中:代表外场引起的分布函数的变化;代表电子因受散射引起的分布函数的变化;代表分布函数是时间显函数时的偏导数。第10页,此课件共32页哦如果电子的分布不随时间变化而处于定态分布状态,则
5、此时f不显含时间,故 也为零,因此有:(5-8)第11页,此课件共32页哦首先讨论“漂移项”。在相空间中,t时刻位置为 处的电子是由t-t时刻在 处的电子漂移来的;而波矢为 的电子是由波矢为 的电子漂移来的。时间位置坐标波矢坐标t-tt第12页,此课件共32页哦当t很小时,可以假定电子在这个漂移过程中没有遇到碰撞。根据全微分的方法可以得到下面的关系式:(5-9)所以有:(5-10)上式表明,外场引起的分布函数的变化由两部分组成,一部分是由于电子在坐标空间的运动引起的;第二部分是电子在波矢空间的运动引起的,其结果是使晶体电子状态代表点在波矢空间的分布成为不均匀的,此时第13页,此课件共32页哦下
6、面再讨论“碰撞项”。可以用一个跃迁几率函数:来描述单位时间由状态 的跃迁几率,这里只考虑自旋不变的跃迁。这种频繁的跃迁显然将引起分布函数的改变。定义了跃迁几率函数以后,就可以写出单位时间内因碰撞从其它位置状态进入到 处相空间单位体积的电子数为:(5-11)第14页,此课件共32页哦用同样的理解方法,可以知道,相空间中由于碰撞单位时间离开 处单位体积的电子数为:(5-12)由于为单位时间内由于碰撞而引起的点的分布函数的变化,因此有:(5-13)第15页,此课件共32页哦结合(5-8)、(5-10)、(5-13)式,可以得到定态条件下的玻耳茲曼方程为:(5-14)第16页,此课件共32页哦513驰
7、豫时间近似(5-14)式表示的玻耳茲曼方程方程是一个微分积分方程,为了求解方便,一般都要作一些简化,其中最主要的方法就是驰豫时间近似。假设碰撞项可以写成下面的形式:(5-15)其中f0指的是平衡时的分布函数(即费米函数)。是引入的一个参数,称为驰豫时间,它是波矢的函数。它表示系统依赖碰撞机制使分布从非平衡分布f恢复到平衡分布状态f0时所用的时间。第17页,此课件共32页哦引入驰豫时间后,玻耳茲曼方程就简化为:(5-16)根据能带理论的基本关系式:(5-17)以及:(其中)(5-18)和:(5-19)第18页,此课件共32页哦将(5-17),(5-18),(5-19)式代入(5-16)式,则玻耳
8、茲曼方程可以写为:(5-20)当晶体中的温度梯度为零,而且晶体只受外电场力作用时,玻耳茲曼方程可以简化为:(5-21)此式可以用于讨论金属的电导率的问题。在讨论金属的热导率问题时(5-20)式等号左边的第一项就很重要了。第19页,此课件共32页哦52金属的电导率在恒温以及恒定外电场的条件下,金属晶体中能够形成稳定的电流密度。这时玻耳茲曼方程可以写成(5-21)的形式,经简单的变化可写为:(5-22)这个方程的解就是电场存在时定态的分布函数f,显然f将是电场 的函数,因此可以把f按 的幂级数展开为:(5-23)式中,f0为 时的f值,因此就相当于平衡情况下的费米函数;f1,f2,分别代表包含 的
9、一次幂、二次幂、项。第20页,此课件共32页哦将(5-23)式代入(5-22)式得:(5-24)由于等式两边的同次幂的项应该相等,因此得到下面的一系列等式:(5-25)第21页,此课件共32页哦由于f0只是电子的能量 的函数,因此(5-25)式中 的一次幂方程可以写成:(5-26)第22页,此课件共32页哦通过物理实验我们知道,在一般的电导问题中,电流与电场成正比,服从欧姆定律,这种情况相当于弱场的情况,也就是说,电流与电场成正比的关系是一种弱场的近似,此时分布函数只需要考虑到 的一次幂,即:由(5-6)式可知,电流密度可以直接由分布函数得到,即:(5-27)第23页,此课件共32页哦在(5-
10、27)式中,第一项相当于平衡分布时的电流密度,因此等于零,将(5-26)式代入(5-27)式中得:(5-28)(5-28)式即为欧姆定律的一般公式。可见这是一个向量关系式。如果把该关系式用分量表示则有:(5-29)第24页,此课件共32页哦如果把(5-29)的向量关系式展开则可以表示为:(5-30)其中:(5-31)是电导率二阶张量的分量。第25页,此课件共32页哦第26页,此课件共32页哦为了使问题简化,下面讨论各向同性的情况。假设导带电子基本上可以用单一有效质量m*来描述。则电子的能量为:(5-32)自由电子的速度分量为:(5-33)第27页,此课件共32页哦把(5-33)式代入(5-31
11、)式中得到:(5-34)各向同性的情况意味着,驰豫时间(K)与波矢K的方向无关,因此在(5-34)的积分中,除了K,K以外,,其余的因子都是球对称的,只要,积分内的函数就是奇函数,所以积分后有:(5-35)第28页,此课件共32页哦同样由于对称,,因此电导率二阶张量相当于一个标量0,而且0可以由下面的关系式来表示:(5-36)第29页,此课件共32页哦由于(5-36)式中的被积函数与波矢K的方向无关,采用球面坐标对 积分,则可以得到:(5-37)第30页,此课件共32页哦(5-37)式的积分结果可以写成:(5-38)上式中,K0表示E=E0F时的K值,它当然也是在K空间球形等能面E=E0F的半径。由于该等能面内包含的状态数应等于电子数N,因此有:所以:(5-39)其中,n是金属中电子的密度。第31页,此课件共32页哦(5-39)式代入(5-38)式得:(5-40)若是电子的平均自由程,则=vF,其中vF是金属电子的费米速度,这时电导率可以写成:(5-41)第32页,此课件共32页哦
限制150内