最新华师大版八年级数学上册知识点总结.pdf
《最新华师大版八年级数学上册知识点总结.pdf》由会员分享,可在线阅读,更多相关《最新华师大版八年级数学上册知识点总结.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档只作交流分析分享八年级数学上册复习提纲第 11 章数的开方11.1 平方根与立方根一、平方根1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。(也叫做二次方根)即:若x2=a,则x叫做a的平方根。2、平方根的性质:(1)一个正数有两个平方根。它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。二、算术平方根1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。2、算术平方根的性质: (1)一个正数的算术平方根只有一个且为正;(2)零的算术平方根是零;(3)负数没有算术平方根;(4)算术平方根的非负性:a0。三、平方根和算术平方根是记号:平方根a(读作:
2、正负根号a) ;算术平方根a(读作根号a)即: “a”表示a的平方根,或者表示求a的平方根; “a”表示a的算术平方根,或者表示求a的算术平方根。其中a叫做被开方数。 负数没有平方根, 被开方数a必须为非负数, 即:a0。四、开平方:求一个非负数的平方根的运算,叫做开平方。其实质就是:已知指数和二次幂求底数的运算。五、立方根1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。(也叫做三次方根)即:若x3=a,则x叫做a的立方根。2、立方根的性质:(1)一个正数的立方根为正; (2)一个负数的立方根为负; (3)零的立方根是零。3、立方根的记号:3a(读作:三次根号a) ,a称为
3、被开方数,“3”称为根指数。3a中的被开方数a的取值范围是:a为全体实数。六、开立方:求一个数的立方根的运算,叫做开立方。其实质就是:已知指数和三次幂求底数的运算。七、注意事项:1、 “a” 、 “a” 、 “3a”的实质意义:“a”问:哪个数的平方是a;“a”问:哪个非负数的平方是a; “3a”问:哪个数的立方是a。2、注意a和3a中的a的取值范围的应用。如:若3x有意义,则x取值范围是。 (x-30,x3)精品文档只作交流分析分享(填:x3)若32009x有意义,则x取值范围是。 (填:全体实数)3、33aa。如:3273,3273,3327274、对于几个算数平方根比较大小,被开方数越大
4、,其算数平方根的值也越大。如:256710等。23和 32怎么比较大小? (你知道吗?不知道就问! ! ! ! ! ! ! )5、算数平方根取值范围的确定方法:关键:找邻近的“完全平方数的算数平方根”作参照。如:确定7的取值范围。479,273。6、 几个常见的算数平方根的值:414.12,732. 13,236.25,449. 26,646.27。八、补充的二次根式的部分内容1、二次根式的定义:形如a(a0)的式子,叫做二次根式。2、二次根式的性质: (1)baab(a0,b0) ;(2) baba(a0,b0) ;(3) aa2)((a0) ; (4) |2aa3、二次根式的乘除法:(1)
5、乘法:abba(a0,b0) ; (2)除法:baba(a0,b0)11.2 实数与数轴一、无理数1、无理数定义:无限不循环小数叫做无理数。2、常见的无理数:(1)开方开不尽的数。如:256710,2532617102,等。(2) “”类的数。如:,3,1,2等。(3)无限不循环小数。如: 2.1010010001,-0.234242242224 ,等二、实数1、实数定义:有理数与无理数统称为实数。2、与实数有关的概念:(1)相反数:实数a的相反数为 -a。若实数a、b互为相反数,则a+b=0。(2)倒数:非零实数a的倒数为a1(a0) 。若实数a、b互为倒数,则ab=1。精品文档只作交流分析
6、分享(3)绝对值:实数a的绝对值为:)0() 0( 0)0(|aaaaaa3、实数的运算:有理数的所有运算法则及运算律均适用于实数的运算。4、实数的分类:(1)按照正负性分为:正实数、零、负实数三类。(2)按照定义分为:5、几个“非负数”: (1)a20; (2)|a|0; (3)a0。6、实数与数轴上的点是一一对应关系。第 12 章整式的乘除12.1 幂的运算一、同底数幂的乘法1、法则:amanap=am+n+p+ (m、n、p均为正整数)文字:同底数幂相乘,底数不变,指数相加。2、注意事项:(1)a可以是实数,也可以是代数式等。如:234=2+3+4=9;(-2)2(-2)3=(-2)2+
7、3=(-2)5=-25;(2)3(2)4=(2)3+4=(2)7;(a+b)3(a+b)4(a+b)= (a+b)3+4+1=(a+b)8 (2)一定要“同底数幂”“相乘”时,才能把指数相加。(3)如果是二次根式或者整式作为底数时,要添加括号。二、幂的乘方1、法则: (am)n=amn(m、n均为正整数)。推广: (am)nps=amn p s文字:幂的乘方,底数不变,指数相乘。2、注意事项:(1)a可以是实数,也可以是代数式等。如:(2)3=23=6;(2)34=(2)34=(2)12;(a-b)24= (a-b)24=(a-b)8 (2)运用时注意符号的变化。(3)注意该法则的逆应用,即:
8、amn= (am)n,如:a15= (a3)5= (a5)3三、积的乘方1、法则: (ab)n=anbn(n为正整数)。推广: (acde)n=ancndnen文字:积的乘方等于把积的每一个因式都分别乘方,再把所得的幂相乘。2、注意事项:(1)a、b可以是实数,也可以是代数式等。如:(2)3=222=42;(23)2=(2)2(3)2=23=6;(-2abc)3=(-2)3a3b3c3=-8a3b3c3;(a+b)(a-b)2=(a+b)2(a-b)2 (2)运用时注意符号的变化。(3)注意该法则的逆应用,即:anbn =(ab)n;如:2333= (2 3)3=63,(x+y)2(x-y)2
9、=(x+y)(x-y)2精品文档只作交流分析分享四、同底数幂的除法1、法则:aman=am-n(m、n均为正整数,mn,a0)文字:同底数幂相除,底数不变,指数相减。2、注意事项:(1)a可以是实数,也可以是代数式等。如:43=4-3= ;(-2)5(-2)3=(-2)5-3=(-2)2=4;(2)6(2)4=(2)6-4=(2)2=2;(a+b)16(a+b)14= (a+b)16-14=(a+b)2=a2+2ab +b2 (2)注意a0 这个条件。(3) 注意该法则的逆应用, 即:am-n=aman; 如:ax-y=axay, (x+y)2a-3=(x+y)2a(x+y)312.2 整式的
10、乘法一、单项式与单项式相乘法则:单项式与单项式相乘,只要将它们的系数与系数相乘,相同字母的幂相乘,多余的字母照搬到最后结果中。如:(-5a2b2)(-4b2c)(-23ab)=(-5)(-4) (-23) (a2a)(b2b2)c=-30a3b4c 二、单项式与多项式相乘法则: (乘法分配律)只要将单项式分别去乘以多项式的每一项,再将所得的积相加。如:22( 3)(21)xxx(-3x2)(-x2)+(-3x2)2x一(-3x2) 1=432363xxx三、多项式与多项式相乘法则: (1)将一个多项式中的每一项分别乘以另一个多项式的每一项,再将所得的积相加。如:(m+n)(a+b)= ma+m
11、b+na+nb (2) 把其中一个多项式看成一个整体(单项式),去乘以另一个多项式的每一项,再按照单项式与多项式相乘的法则继续相乘,最后将所得的积相加。如:(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb12.3 乘法公式一、两数和乘以这两数的差1、公式: (a+b)(a-b)=a2-b2;名称:平方差公式。2、注意事项:(1)a、b可以是实数,也可以是代数式等。如:(10+9)(10-9)=102-92=100-81=19;(2xy+a)(2xy-a)=(2xy)2-a2=4x2y2-a2;(a+b+)( a+b -)=(2xy)2-a2=4 x2y2-a
12、2;(2)注意公式中的第一项、第二项各自相同,中间是“异号”的情况,才精品文档只作交流分析分享能用平方差公式。(3)注意公式的来源还是“多项式多项式”。二、完全平方公式1、公式: (ab)2=a22a b+b2;名称:完全平方公式。2、注意事项:(1)a、b可以是实数,也可以是代数式等。如: (2+3)2=(2)2+223+32=2+62+9=11+62; (mn-a)2=(mn)2-2mna+ a2= m2n2-2mna+ a2;( a+b -)2=( a+b)2-2( a+b)+2= a2+2a b+b2-2a-b +2;(2)注意公式运用时的对位“套用” ;(3)注意公式中“中间的乘积项
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新华 师大 八年 级数 上册 知识点 总结
限制150内