最新《P和PI控制参数设计》课程设计.doc
《最新《P和PI控制参数设计》课程设计.doc》由会员分享,可在线阅读,更多相关《最新《P和PI控制参数设计》课程设计.doc(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-dateP和PI控制参数设计课程设计1 P和PI控制原理目录摘 要11 P和PI控制原理21.1 比例(P)控制21.2 比例-微分控制32 P和PI控制参数设计42.1 原系统分析42.1.1 初始条件42.1.2 原系统稳定性分析42.2 P控制参数设计52.2.1 加入P控制器后系统稳定性分析52.2.2 加入P控制器后系统动态性能指标计算72.3 PI控制参数设计14
2、2.3.1 加入PI控制器后系统稳定性分析142.3.2 加入PI控制器后系统动态性能指标计算163 P和PI控制特点的比较233.1 比例(P)控制器:233.2 比例-积分(PI)控制器:244 心得体会245 参考文献26附录一27附录二29摘 要在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。 对于比例(P)控制,在串联校正中,加大比例系数可以提高系统的开环增益,减小
3、系统的稳态误差,从而提高系统的控制精度,但也会降低系统的相对稳定性。比例积分(PI)控制器相当于在系统中加入了一个位于原点的开环极点,从而提高了系统型别,改善了其稳态性能。同时也增加了一个位于S平面左半平面的开环零点,减小了阻尼程度,缓和了系统极点对于系统稳定性及动态过程产生不利影响。根据系统的需要和调节要求,可以选择多种方式的校正系统,各种系统的性能会有所差异,选取最优的组合最大化满足校正要求,从而使之达到最好的校正效果。关键词:自动控制系统,比例(P)控制,比例积分(PI)控制1 P和PI控制原理1.1 比例(P)控制 比例控制是一种最简单的控制方式。单独的比例控制也称“有差控制”,输出的
4、变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太小,控制作用太强,容易导致系统的稳定性变差,引发振荡。对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。比例(P)控制主要组成部分是比例环节,其中比例环节的方块图如图1所示:图1 比例环节方块图其传递函数为:单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定
5、余差存在的场合。工业生产中比例控制规律使用较为普遍。比例环节主要由运算放大器、纯电阻、滑动变阻器等组成,其控制器实质上是一个具有可调增益的放大器。在信号变换过程中,P控制器值改变信号的增益而不影响其相位。在串联校正中,加大了控制器增益,可以提高系统的开环增益,减小的系统稳态误差,从而提高系统的控制精度。1.2 比例-微分控制比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。比例积分(PI)控制主要组成部分是比例积分环节,
6、其中比例积分环节的方块图如图2所示图2 比例积分环节方块图其传递函数为: 积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。在串联校正时,PI控制器相当于在系统中增加了一个位于原点的开环极点,同时也增加了一个位于s左半平面的开环零点。位于原点的极点可以提高系统的型别,以消除或减小系统的稳态误差,改善系统的稳态性能;而增加的负实零点则用来减小系统的阻
7、尼程度,缓和PI控制器极点对系统稳定性及动态性能产生的不利影响。只要积分时间常数足够大,PI控制器对系统稳定性的不利影响可大为减弱,在控制工程中,PI控制器主要用来改善控制系统的稳态性能。2 P和PI控制参数设计2.1 原系统分析2.1.1 初始条件反馈系统方框图如图3所示。(比例P控制律),(比例积分PI控制律),RYe+-图32.1.2 原系统稳定性分析由题目给出的初始条件知,当,未加入D(s)校正环节时,系统开环传递函数为: 由系统结构图可知系统为单位负反馈系统所以闭环传递函数为:则系统的闭环特征方程为:按劳斯判据可列出劳斯表如表1:表1 初始系统的劳斯表1-55110由于劳斯表第一列符
8、号不相同,一行的系数为负,故所以系统不稳定,需要校正。2.2 P控制参数设计2.2.1 加入P控制器后系统稳定性分析当,时,系统结构图如图4所示。图4 加入P控制器的系统法结构图系统的开环传递函数为: 则其闭环传递函数为: 系统的闭环特征方程为: 按劳斯判据可列出劳斯表如表2:表2 加入P控制器后系统的劳斯表1K-65KK0 要使系统稳定则必须满足劳斯表第一列全为正,即: 解得,系统稳定时,K的取值范围为。当输入信号为单位阶跃信号时, 系统的误差系数为:系统的稳态误差为:2.2.2 加入P控制器后系统动态性能指标计算 由上述可知,系统稳定的条件为k7.5。分别对k分别取7.5、10、30来讨论
9、分析系统的动态性能指标。2.2.2.1 不同K值下的系统闭环特征根1) K=7.5时系统的闭环传递函数为:通过MATLAB的roots命令求取系统闭环特征根,其程序如下:den=1,5,1.5,7.5; %描述当K=7.5时的系统传递函数中分母的多项式系数roots(den); %求系统特征根其运行结果如下:ans =-5.00000.0000 + 1.2247i0.0000 - 1.2247i系统闭环的特征根为:。从是一对共轭纯虚根,系统处于临界稳定状态。2) K=10时系统的闭环传递函数为:通过MATLAB的roots命令求取系统闭环特征根,其程序如下:den=1,5,4,10; %描述当
10、K=10时的系统传递函数中分母的多项式系数roots(den); %求系统特征根其运行结果如下:ans =-4.6030-0.1985 + 1.4605i-0.1985 - 1.4605i当K=10时,。3) K=30时系统的闭环传递函数为: 通过MATLAB的roots命令求取系统闭环特征根,其程序如下:den=1,5,14,30; %描述当K=30时的系统传递函数中分母的多项式系数roots(den); %求系统特征根其运行结果如下:ans =-1.6194-1.6903 + 3.9583i-1.6903 - 3.9583i当K=30时,。 2.2.2.2 不同K值下的单位阶跃响应曲线1)
11、 K=7.5时系统的闭环传递函数为:用MATLAB求系统的单位阶跃响应,绘制出K=7.5时的单位阶跃响应曲线图,其程序如下:num1=7.5,7.5; %描述当K=7.5时的系统传递函数中分子的多项式系数den1=1,5,1.5,7.5; %描述当K=7.5时的系统传递函数中分母的多项式系数t1=0:0.1:15; %选定仿真时间向量,并设计步长y1=step(num1,den1,t1);%求当K=7.5时系统单位阶跃响应2) K=10时系统的闭环传递函数为:用MATLAB求系统的单位阶跃响应,绘制出K=10时的单位阶跃响应曲线图,其程序如下:num2=10,10; %描述当K=10时的系统传
12、递函数中分子的多项式系数den2=1,5,4,10; %描述当K=10时的系统传递函数中分母的多项式系数y2=step(num2,den2,t1); %求当K=10时系统单位阶跃响应3) K=30时系统的闭环传递函数为: 用MATLAB求系统的单位阶跃响应,绘制出K=30时的单位阶跃响应曲线图,其程序如下:num3=30,30; %描述当K=30时的系统传递函数中分子的多项式系数den3=1,5,24,30; %描述当K=30时的系统传递函数中分母的多项式系数y3=step(num3,den3,t1); %求当K=30时系统单位阶跃响应4)单位阶跃响应曲线plot(t1,y1,:r,t1,y2
13、,g.,t1,y3,b),xlabel(t),ylabel(c(t),title(不同K值时单位阶跃响应),grid;%以x为横坐标,分别以y为纵坐标,画出y1、y2、y3多重折线,如图5所示:图5 单位阶跃响应曲线2.2.2.3不同k值下的系统动态性能指标1)K=7.5时利用ltiview命令观察和读出系统单位阶跃响应时的暂态性能指标,程序如下:MATLAB程序如下:num=7.5,7.5; %描述当K=7.5时的系统传递函数中分子的多项式系数den=1,5,1.5,7.5; %描述当K=7.5时的系统传递函数中分母的多项式系数step(num1,den1); %求当K=7.5时系统单位阶跃
14、响应sys3=tf(num1,den1); %生成当K=7.5时的传递函数ltiview(sys1); %对sys1进行仿真grid on;图6 K=7.5时的单位阶跃响应从图6可以看出,当K=7.5时,系统的单位阶跃响应为等幅振荡,处于无阻尼状态。2) K=10时利用ltiview命令观察和读出系统单位阶跃响应时的暂态性能指标,程序如下:MATLAB程序如下:num2=10,10; %描述当K=10时的系统传递函数中分子的多项式系数den2=1,5,4,10; %描述当K=10时的系统传递函数中分母的多项式系数step(num2,den2); %求当K=10时系统单位阶跃响应sys2=tf(
15、num2,den2); %生成当K=10时的传递函数ltiview(sys2); %对sys2进行仿真grid on;图7 K=10时的单位阶跃响应当光标移到对应点后,在如图7浮出的文本框中可读出数据,列出如下:上升时间:峰值时间:超调量:调节时间:()3) K=30时利用ltiview命令观察和读出系统单位阶跃响应时的暂态性能指标,程序如下:MATLAB程序如下:num3=30,30; %描述当K=30时的系统传递函数中分子的多项式系数den3=1,5,24,30; %描述当K=30时的系统传递函数中分母的多项式系数step(num3,den3); %求当K=30时系统单位阶跃响应sys3=
16、tf(num3,den3); %生成当K=30时的传递函数ltiview(sys3); %对sys3进行仿真grid on;图8 K=30时的单位阶跃响应当光标移到对应点后,在浮出的文本框中可读出数据,列出如下:上升时间:峰值时间:超调量:调节时间:()从以上数值,我们可以看出,在K7.5时,适当增大K的值,上升时间、超调时间、超调量、调节时间都减少了,就是说改善了系统的暂态性能,加快了系统的响应速度;同时增大控制器K的值,也是提高了系统的开环增益,减小系统的稳态误差,从而提高系统的控制精度。2.3 PI控制参数设计2.3.1 加入PI控制器后系统稳定性分析当D(s)=D2(s),G(s)=G
17、2(s)时,系统结构图如图9所示。图9 加入PI控制器的系统结构图系统的开环传递函数为:则其闭环传递函数为:系统的闭环特征方程为:,可以列出劳斯表,如表3:表3 加入PI控制器后系统的劳斯阵1K+230劳斯判据中要满足系统稳定则劳斯表第一列必需满足符号相同。即: 所以系统稳定的条件为:稳定时的允许区域如图10:图10 和允许范围图 当输入信号为单位阶跃信号时 系统的误差系数为: 系统的稳态误差为:2.3.2 加入PI控制器后系统动态性能指标计算 由上述可知,系统稳定的条件为。分别取;的情况下求取系统的闭特征根。2.3.2.1 不同K和值下的系统闭环特征根1) 时系统的闭环传递函数为:通过MAT
18、LAB的roots命令求取系统闭环特征根,其程序如下:den=1,3,2,5; %描述系统传递函数中分母的多项式系数roots(den); %求系统特征根其运行结果如下:ans =-2.9042 -0.0479 + 1.3112i-0.0479 - 1.3112i当时:。2) 时系统的闭环传递函数为:通过MATLAB的roots命令求取系统闭环特征根,其程序如下:den=1,3,12,5; %描述系统传递函数中分母的多项式系数roots(den); %求系统特征根其运行结果如下:ans =-0.4618 -1.2691 + 3.0360i-1.2691 - 3.0360i 当时:。3) 时系统
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- P和PI控制参数设计 最新 PI 控制 参数 设计 课程设计
限制150内