《离散型随机变量及其分布列公开课.ppt》由会员分享,可在线阅读,更多相关《离散型随机变量及其分布列公开课.ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于离散型随机变量及其分布列公开课现在学习的是第1页,共17页引例:引例:(1)抛掷一枚骰子,可能出现的点数有几种情况?)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球)姚明罚球2次有可能得到的分数有几种情况?次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一思考:在上述试验开始之前,你能确定结果是哪一 种情况吗?种情况吗?1,2,3,4,5,60分分,1分分,2分分正面向上,反面向上正面向上,反面向上能否把掷硬币能否把掷硬币的结果也用数的结果也用数字来表示呢?字来表示呢?现
2、在学习的是第2页,共17页例例1、一个袋中装有、一个袋中装有5个白球和个白球和5个黑球,若从中任取个黑球,若从中任取3个,个,则其中所含白球的个数则其中所含白球的个数X就就是一个随机变量,求是一个随机变量,求X的取值的取值范围,并说明范围,并说明X的不同取值所表示的事件。的不同取值所表示的事件。解:解:X的取值范围是的取值范围是 0,1,2,3 ,其中,其中 X=0表示的事件是表示的事件是“取出取出0个白球,个白球,3个黑球个黑球”;X=1表示的事件是表示的事件是“取出取出1个白球,个白球,2个黑球个黑球”;X=2表示的事件是表示的事件是“取出取出2个白球,个白球,1个黑球个黑球”;X=3表示
3、的事件是表示的事件是“取出取出3个白球,个白球,0个黑球个黑球”;变题:变题:X 3在这里又表示什么事件呢?在这里又表示什么事件呢?“取出的取出的3个球中,白球不超过个球中,白球不超过2个个”现在学习的是第3页,共17页 写出下列各随机变量可能的取值,并说明它们各自写出下列各随机变量可能的取值,并说明它们各自所表示的随机试验的结果:所表示的随机试验的结果:(1)从)从10张已编号的卡片(从张已编号的卡片(从1号到号到10号)中任取号)中任取1张,张,被取出的卡片的号数被取出的卡片的号数x x;(2)抛掷两个骰子,所得点数之和)抛掷两个骰子,所得点数之和Y;(3)某城市)某城市1天之中发生的火警
4、次数天之中发生的火警次数X;(4)某品牌的电灯泡的寿命)某品牌的电灯泡的寿命X;(5)某林场树木最高达)某林场树木最高达30米,最低是米,最低是0.5米,则此林场米,则此林场 任意一棵树木的高度任意一棵树木的高度x x(x x=1、2、3、10)(Y=2、3、12)(X=0、1、2、3、)0,+)0.5,30思考:前思考:前3个随机变量与最后两个有什么区别?个随机变量与最后两个有什么区别?现在学习的是第4页,共17页二、随机变量的分类:二、随机变量的分类:1、如果可以按一定次序,把随机变量可能取的值一一、如果可以按一定次序,把随机变量可能取的值一一 列出,那么这样的随机变量就叫做列出,那么这样
5、的随机变量就叫做离散型随机变量离散型随机变量。(如掷骰子的结果,城市每天火警的次数等等)(如掷骰子的结果,城市每天火警的次数等等)2、若随机变量可以取某个区间内的一切值,那么这样的、若随机变量可以取某个区间内的一切值,那么这样的 随机变量叫做随机变量叫做连续型随机变量连续型随机变量。(如灯泡的寿命,树木的高度等等)(如灯泡的寿命,树木的高度等等)现在学习的是第5页,共17页 下列试验的结果是否是离散型随机变量?下列试验的结果是否是离散型随机变量?(1)已知在从汕头到广州的铁道线上,每隔)已知在从汕头到广州的铁道线上,每隔50米有一个米有一个 电线铁站,这些电线铁站的编号;电线铁站,这些电线铁站
6、的编号;(2)任意抽取一瓶某种标有)任意抽取一瓶某种标有2500ml的饮料,其实际量的饮料,其实际量 与规定量之差;与规定量之差;(3)在优、良、中、及格、不及格)在优、良、中、及格、不及格5个等级的测试中,个等级的测试中,某同学可能取得的等级。某同学可能取得的等级。现在学习的是第6页,共17页 若用若用X表示抛掷一枚质地均匀的骰子所得的点数,表示抛掷一枚质地均匀的骰子所得的点数,请把请把X取不同值的概率填入下表,并求判断下列事件发生取不同值的概率填入下表,并求判断下列事件发生的概率是多少?的概率是多少?(1)X是偶数是偶数;(;(2)X3;X123456P解:解:P(X是偶数是偶数)=P(X
7、=2)+P(X=4)+P(X=6)P(X3)=P(X=1)+P(X=2)现在学习的是第7页,共17页三、离散型随机变量的分布列:三、离散型随机变量的分布列:一般地,若离散型随机变量一般地,若离散型随机变量X 可能取的不同值为:可能取的不同值为:x1,x2,xi,xnX取每一个取每一个xi(i=1,2,n)的概率的概率P(X=xi)=Pi,则称表:,则称表:Xx1x2xiPP1P2Pi为离散型随机变量为离散型随机变量X的的概率分布列概率分布列,简称为,简称为X的分布列的分布列.有时为了表达简单,也用等式有时为了表达简单,也用等式 P(X=xi)=Pi i=1,2,n来表示来表示X的分布列的分布列
8、现在学习的是第8页,共17页离散型随机变量的分布列应注意问题:离散型随机变量的分布列应注意问题:Xx1x2xiPP1P2Pi1、分布列的构成:、分布列的构成:(1)列出了离散型随机变量)列出了离散型随机变量X的所有取值;的所有取值;(2)求出了)求出了X的每一个取值的概率;的每一个取值的概率;2、分布列的性质、分布列的性质:现在学习的是第9页,共17页例例2、在掷一枚图钉的随机试验中,令、在掷一枚图钉的随机试验中,令如果针尖向上的概率为如果针尖向上的概率为p,试写出随机变量,试写出随机变量X的分布列。的分布列。解:根据分布列的性质,针尖向下的概率是解:根据分布列的性质,针尖向下的概率是(1-p
9、),于是,随机于是,随机变量变量X的分布列是的分布列是X01P1-pp像上面这样的分布列称为像上面这样的分布列称为两点分布列两点分布列。如果随机变量如果随机变量X的分布列为两点分布列,就称的分布列为两点分布列,就称X服从两点分布,而称服从两点分布,而称p=P(X=1)为成功概率。为成功概率。现在学习的是第10页,共17页例例3、袋子中有、袋子中有3个红球,个红球,2个白球,个白球,1个黑球,这些球个黑球,这些球除颜色外完全相同,现要从中摸一个球出来,若摸到除颜色外完全相同,现要从中摸一个球出来,若摸到黑球得黑球得1分,摸到白球得分,摸到白球得0分,摸到红球倒扣分,摸到红球倒扣1分,试写分,试写
10、出从该盒内随机取出一球所得分数出从该盒内随机取出一球所得分数X的分布列的分布列.解:因为只取解:因为只取1球,所以球,所以X的取值只能是的取值只能是1,0,-1从袋子中随机取出一球所得分数从袋子中随机取出一球所得分数X的分布列为:的分布列为:X10-1P现在学习的是第11页,共17页求离散型随机变量分布列的基本步骤:求离散型随机变量分布列的基本步骤:(1)确定随机变量的所有可能的值)确定随机变量的所有可能的值xi(2)求出各取值的概率)求出各取值的概率P(X=xi)=pi(3)列出表格)列出表格定值定值 求概率求概率 列表列表现在学习的是第12页,共17页课堂练习:课堂练习:0.30.16P3
11、210-12、若随机变量、若随机变量的分布列如下表所示,则常数的分布列如下表所示,则常数a=_C现在学习的是第13页,共17页课堂练习:课堂练习:0.88现在学习的是第14页,共17页思考:一个口袋有思考:一个口袋有5只同样大小的球,编号分别为只同样大小的球,编号分别为1,2,3,4,5,从中同时取出,从中同时取出3只,以只,以X表示取出的球最小的表示取出的球最小的号码,求号码,求X的分布列。的分布列。解:因为同时取出解:因为同时取出3个球,故个球,故X的取值只能是的取值只能是1,2,3当当X=1时,其他两球可在剩余的时,其他两球可在剩余的4个球中任选个球中任选 故其概率为故其概率为当当X=2时,其他两球的编号在时,其他两球的编号在3,4,5中选,中选,故其概率为故其概率为当当X=3时,只可能是时,只可能是3,4,5这种情况,这种情况,概率为概率为现在学习的是第15页,共17页X123P随机变量随机变量X的分布列为的分布列为思考:一个口袋有思考:一个口袋有5只同样大小的球,编号分别为只同样大小的球,编号分别为1,2,3,4,5,从中同时取出,从中同时取出3只,以只,以X表示取出的球最小的表示取出的球最小的号码,求号码,求X的分布列。的分布列。现在学习的是第16页,共17页感谢大家观看现在学习的是第17页,共17页
限制150内