信息技术安全系统的风险评估问题cukz.docx
《信息技术安全系统的风险评估问题cukz.docx》由会员分享,可在线阅读,更多相关《信息技术安全系统的风险评估问题cukz.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、信息技术安全系统的风险评估问题计算机:焦世斗 物理:宋世巍 电子:张弘 摘要本文把信息技术安全系统的风险评估问题归为一类优化问题。是学校在以用户效率、机会成本为约束条件下,寻找能使总成本最小的措施的优化组合模型。通过对数据的分析和题中所给条件,我们认为、影响机会成本,并存在一个经验初始值(均在0到1之间),每项措施会对、产生影响,进而会对机会成本(和它发生的概率)、总成本产生影响,。在以用户效率、机会成本为约束条件下,求总成本的最小值。因此我们建立这样的模型:和 通过对结果的分析,根据事件的独立性,我们把公式(6)、(7)、(8)换成概率并联公式并对用户效率加一考虑,得到一个优化模型。再进一步
2、分析,我们把各个小项独立开来研究它们对系统的影响,首先通过程序剔除了一些明显不符合要求的措施。然后,我们为每一个小项,按其对总成本影响的大小, 赋予不同的优先级,进而通过优先选择的方法来求解最佳的组合。模型的公式概括如下:最后,我们将简单讨论此模型的通用性。一、问题重述一台计算机如果受到黑客或者病毒攻击,其中重要的个人信息和软件就有可能丢失。为减少黑客或病毒造成的损失,需建立相应的信息术安全系统。通过对一个大学的相关IT系统安全措施(包括技术和政策两方面)分析,我们的任务是:1、建立一个模型,该模型可以用来确定一所大学的IT安全系统所采取的政策和技术是否适当。通过计算机会成本、采购及维护设备费
3、用以及培训系统管理员等各项费用总和,评估一个IT安全系统的优劣,从而得到防御措施(政策和技术两方面)的最佳组合。2、试讨论所给模型的通用性。二、基本假设与符号说明1、基本假设:假设1:每一项措施都是独立的,相互之间没有影响;假设2:、之间是独立的,相互之间没有影响;假设3:、自身效果可以积累,但不是简单的线性关系;假设4:生产效率对其它的影响我们暂时可以忽略;假设5:由于人员薪金固定,故在评估系统时可以只考虑变动因素(机会成本、措施费用等),而不考虑薪金的因素。2、符号说明:-总成本(包括机会成本和总费用,不包括雇佣管理员等固定花费);-某一项风险事件可能产生的最大机会成本;-某一项风险事件发
4、生的概率;-采用各项措施的总费用;-采用项措施等价为一个措施后对系统的累计影响值;-采用项措施等价为一个措施后对系统的累计影响值;-采用项措施等价为一个措施后对系统的累计影响值;,-分别为第n项措施的、值;-第项措施的总费用(包括维修费,培训费等);-所采取的措施集;-某一项措施。各项措施明细表:(见下页表(一)M1Host-based FirewallM2Network-based FirewallM3Host-based Anti-VirusM4Network-based Anti-VirusM5Network-based Intrusion Detection SystemM6Netwo
5、rk-based SPAM FilterM7Network-based Vulnerability ScanningM8Data RedundancyM9Service RedundancyM10Strong PasswordsM11No Password PolicyM12Formal Security AuditsM13Disallow WirelessM14Allow WirelessM15Restrict Removable MediaM16Unmonitored Personal UseM17Restricted Personal Use/ Detailed User Trackin
6、gM18User Training RequiredM19Sys Admi Training Required 表(一)三、模型的建立(反正切模型)在未采取措施时, C、I、A对机会成本损失的概率有影响,此时C、I、A应存在一个经验初始值、,从而产生初始的机会成本。每个大项措施中都包含几个小项措施,每个小项措施的采用又都会对系统的C、I、A作用,使它们发生改变,进而影响机会成本损失的发生概率Pi,改变机会成本值。同时,措施也将增加费用,影响用户的效率。把19大项看成是固定的,以机会成本、费用和效率为约束条件,求总成本最小值。图: 图(一)根据以上分析,我们初步建立起一个模型: 和 在(9)式中
7、选取适当的C0、I0、A0,由(5)(8)式分别得k项措施确定的C、I、A值,再由(2)(4)式分别得k项措施引起机会成本概率、措施总费用和总机会成本,由(1)式总成本函数得总成本。其关系可以用下面的框图表示:C,I,A,Cost,F(x,p),Y 图(二)四数据的处理数据分析与选取:对于表中的各个improvement概率分布,可以假设用一个密度函数来表示。由于在Mean处取得最大值,并且数据集中于Mean处,则密度函数的概率分布大致如下图所示: 图(三)因而大致应该在Mean处附近,故而在取用数据时取Mean中的数据。五、模型的求解在最初的反正切模型中,我们假设所有的措施是由19项不变的向
8、量组成的;即表中所列的19个大项;因此我们通过“反正切模型”求出其中每一大项的等价项,得出对系统一影响的各项指标;进而通过反正切模型可求k项措施同时作用下的等价的措施,基于此:我们就可以通过穷举的方法来得出最优组合的解;算法设计如下:1:申请一个19个元素的数组,并把各个元素置零;录入19项措施的各个指标,是数组的每个元素与一项措施相对应;2:把数组看成一个二进制数,对其加1,然后进行二进制加发运算;得到一个组合,然后求组合的对应措施组合的总成本,并将其放到另一个数组里;3:重复第二项措施知道01数组的所有元素都为为止;此时放总成本的数组已有了219个元素;4:遍历总成本数组,取其最小值;然后
9、计算最小值对应的措施组合,即得到最佳的措施组合;以此为基础,我们假定C0=0.4、I0=0.4、A0=0.5,以C+为程序设计语言实现算法并对结果进行输出:P10.036605机会成本(元)365957P20.0350023P30.0475497总成本(元)918942P40.0424815P50.0424815最优组合M1,M3, M10,M18,M19P60.0642795 表(二)为了使结果更加真实地反映客观现实;我们在多种不同的状态初值下得到了相应的最佳组合: 初始值无防御成本机会成本总成本最佳组合C0I0A00.20.30.267855002294591090430M1,M3,M40
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息技术 安全 系统 风险 评估 问题 cukz
限制150内