神经损伤与再生幻灯片.ppt
《神经损伤与再生幻灯片.ppt》由会员分享,可在线阅读,更多相关《神经损伤与再生幻灯片.ppt(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、神经损伤与再生第1页,共13页,编辑于2022年,星期一神经元的发育和再生是神经科学令人关注的研究领域。19世纪末至20世纪初,科学家们发现低等脊椎动物如鱼类和两栖类的中枢和外周神经系统(peripheralnervoussystem,PNS)损伤后都能再生。然而在哺乳动物中,只有外周神经系统损伤后可以再生,而在中枢神经系统(centralnervoussystem,CNS)则不能。自从Cajal(1928)断言哺乳动物的CNS没有再生能力以来,该领域的研究虽取得许多成果,但一直无重大突破。直至八十年代初Aguayo等发现1-3,体外实验中枢神经可以再生,体内神经细胞的轴突不能再生的原因可能为
2、环境因素和抑制因素的限制所致,从此该领域的研究取得一些突破性成果。特别是近十年来的研究工作使人确信,提供适当条件后CNS也是能够再生的。本文对近年来在中枢神经再生方面的研究进展做一综述。第2页,共13页,编辑于2022年,星期一1神经营养因子(NTFs)近20多年来,相继发现了促使神经元存活和生长的多种营养因子4-6,包括神经生长因子(NGF)、睫状神经营养因子(CNTF)、脑源的神经营养因子(BDNF)、神经营养因子-3(NT-3)及视网膜神经细胞诱向因子(RGNTF)等。第3页,共13页,编辑于2022年,星期一1.1神经生长因子(NGF)LeviMontalcini(1952)发现的神经
3、生长因子(NGF),揭示神经生长的必要条件,为神经科学开拓出崭新的领域。由小鼠颌下腺提取的NGF,分子量为140KD,在机体组织器官(包括脑)有广泛的分布。其生物效应是维持和促进发育中的交感神经细胞及来自神经嵴的感觉神经细胞的存活、分化、成熟以及执行其功能。给新生动物注入抗NGF抗体将使交感神经系统产生永久性的损害,其损害程度与动物的日龄成反比;将NGF注入新生大鼠隔区、海马和新皮质,这些脑区胆碱能神经元的CAMP活性明显升高,胆碱乙酰酶活性增高2倍,表明NGF对脑细胞的正常发育和功能维持有明显作用。对NGF的反应随神经元培养日龄的增加而减弱。与老龄细胞NGF受体减少有关。更为突出的是NGF对
4、轴突生长方向具有决定性的诱导作用。如连续7-10天给新生大鼠脑内注入NGF,交感神经细胞的神经纤维将通过背根节进入脊髓,并向注入NGF的脑干方向生长。此外,NGF具有调节神经元前体细胞增殖和分化的作用7。第4页,共13页,编辑于2022年,星期一1.2睫状神经营养因子(CNTF)睫状神经营养因子(CNTF)最初是自鸡胚眼球脉络膜、睫状体和虹膜,随后自成年大鼠及兔坐骨神经中分离提取的分子量为20-24KD的酸性蛋白质,因能促进体外培养的鸡胚副交感睫状节神经原存活而命名8。许多研究表明910,CNTF能支持多种类型神经元存活(如副交感神经元、交感节前、后神经元、感觉神经元、脊髓运动神经元等),抑制
5、鸡胚交感神经元的增殖,并促使其向胆碱能分化11。尽管CNTF在体内外研究中具有广泛的生物学效应,但其在体内却仅存在于周围神经的Schwann细胞和中枢神经的星形胶质细胞的,轴突及髓鞘中不存在。在病理条件下,CNTF对保护神经元免于在轴突切断后变性坏死可能有很大影响。第5页,共13页,编辑于2022年,星期一1.3脑源的神经营养因子(BDNF)脑源的神经营养因子(BDNF)是由猪脑提取液中获得的一种神经营养因子,为分子量12.3KD的碱性蛋白。其氨基酸序列55%-60%与NGF、NT-3同源。它不但对多种神经元的发育分化和生长再生具有维持和促进作用,也能挽救损伤的脊髓运动神经元和感觉神经元。将胚
6、胎脊髓植入成鼠脊髓后,对BDNF的变化作原位斑点分子杂交。术后15天移植物仍呈现很强的分子杂交反应,而未经移植的成鼠脊髓损伤7天后杂交反应强度下降。损伤神经再生持续的时间延长,正常情况下再生非常有限的脊髓神经纤维向移植方向迅速延伸,提示BDNF为损伤神经元提供营养。目前,国外已开始试用脑内注射BDNF治疗某些神经系统疾病(如Parkinson病、肌萎缩侧索硬化症等),其治疗有一定效果,但由于大规模生产和用药途径等问题未得到解决,目前还不能真正应用于临床12-14。第6页,共13页,编辑于2022年,星期一1.4其他神经营养因子此外,神经营养因子-3(NT-3)为分子量13.6KD的蛋白,对鸡背
7、根节、三叉神经节部分神经原和交感神经节有生物学效应。视网膜神经节细胞诱向因子(RGNTF)为30KD的蛋白,具有支持和促进视网膜神经节细胞的存活和生长作用,同时对其突起有明显的诱导作用。研究中发现,RGNTF能使培养的新生大鼠视网神经节细胞存活增加12倍,RGNTF单克隆抗体对视网膜神经节细胞生长活性的抑制达70%。进一步研究表明,出生后RGNTF主要由上丘的神经细胞合成,并随年龄的增长而减少15,16。现认为,PNS的髓鞘是施旺细胞(Schwanncell),可产生神经营养因子,促进PNS轴突生长;但CNS的髓鞘是少突胶质细胞(oligodendrocyte),产生神经生长抑制因子(neur
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 神经 损伤 再生 幻灯片
限制150内