模式识别导论三.ppt
《模式识别导论三.ppt》由会员分享,可在线阅读,更多相关《模式识别导论三.ppt(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、模式识别导论三现在学习的是第1页,共48页3-1线性分类器的设计 上一章我们讨论了线性判别函数形式为:g(x)=WTX 其中 X=(X1,X2Xn)n维特征向量 W=(W1,W2 Wn,Wn+1)n维权向量 通常通过特征抽取可以获得n维特征向量,因此n维权向量是要求解的。求解权向量的过程就是分类器的训练过程,使用已知类别的有限的学习样本来获得分类器的权向量被称为有监督的分类。现在学习的是第2页,共48页利用已知类别学习样本来获得权向量的训练过程如下已知x1 1,通过检测调整权向量,最终使x1 1已知x2 2,通过检测调整权向量,最终使x2 2这样就可以通过有限的样本去决定权向量 x1 x2.x
2、n 1 w1 w2 wn wn+1 0 x1 检测(已知类别)W1 X1 W2 X2 Wn Xn Wn+10 -X1dW1-X2dW2-W3 0所以 g(x)=WTX 0 其中W=(W1,W2,W3)T为各模式增1矩阵为N*(n+1)矩阵N为样本数,n为特征数现在学习的是第5页,共48页训练过程就是对已知类别的样本集求解权向量w,这是一个线性联立不等式方程组求解的过程。求解时:只有对线性可分的问题,g(x)=WTX才有解联立方程的解是非单值,在不同条件下,有不同的解,所以就产生了求最优解的问题求解W的过程就是训练的过程。训练方法的共同点是,先给出准则函数,再寻找使准则函数趋于极值的优化算法,不
3、同的算法有不同的准则函数。算法可以分为迭代法和非迭代法。现在学习的是第6页,共48页一梯度下降法迭代法欲对不等式方程组WTX0求解,首先定义准则函数(目标函数)J(W),再求J(W)的极值使W优化。因此求解权向量的问题就转化为对一标量函数求极值的问题。解决此类问题的方法是梯度下降法。方法就是从起始值W1开始,算出W1处目标函数的梯度矢量J(W1),则下一步的w值为:W2=W1-1J(W1)W1为起始权向量 1为迭代步长 J(W1)为目标函数J(W1)为W1处的目标函数的梯度矢量现在学习的是第7页,共48页在第K步的时候Wk+1=Wk-kJ(Wk)k为正比例因子这就是梯度下降法的迭代公式。这样一
4、步步迭代就可以收敛于解矢量,k取值很重要 k太大,迭代太快,引起振荡,甚至发散。k太小,迭代太慢。应该选最佳k。现在学习的是第8页,共48页选最佳选最佳k 目标函数J(W)二阶台劳级数展开式为 J(W)J(Wk)+JT(W-Wk)+(W-Wk)TD(W-Wk)T/2 其中D为当W=Wk时 J(W)的二阶偏导数矩阵 将W=Wk+1=Wk-kJ(Wk)代入式得:J(Wk+1)J(Wk)-k|J|2+k2JT DJ 其中J=J(Wk)对k求导数,并令导数为零有 最佳步长为k=|J|2/JTDJ这就是最佳k的计算公式,但因二阶偏导数矩阵D的计算量太大,因此此公式很少用。现在学习的是第9页,共48页若令
5、W=Wk+1上式为J(Wk+1)=J(Wk)+JT(Wk+1-Wk)+(Wk+1-Wk)TD(Wk+1-Wk)T/2 对Wk+1求导,并令导数为零可得:最佳迭代公式:Wk+1=Wk-D-1J 牛顿法的迭代公式 D-1是D的逆阵讨论:牛顿法比梯度法收敛的更快,但是D的计算量大并且要计算D-1。当D为奇异时,无法用牛顿法。现在学习的是第10页,共48页二感知器法感知器的原理结构为:现在学习的是第11页,共48页通过对W的调整,可实现判别函数g(x)=WTX RT 其中RT为响应阈值定义感知准则函数:只考虑错分样本定义:其中x0为错分样本当分类发生错误时就有WTX 0,所以J(W)总是正值,错误分类
6、愈少,J(W)就愈小。理想情况为 即求最小值的问题。现在学习的是第12页,共48页求最小值对W求梯度代入迭代公式中Wk+1=Wk-kJ 由J(W)经第K+1次迭代的时候,J(W)趋于0,收敛于所求的W值现在学习的是第13页,共48页W的训练过程:例如:x1,x2,x31 作 x1,x3的垂直线可得解区(如图)假设起始权向量w1=0 k=1 1.x1,x2,x3三个矢量相加得矢量2,垂直于矢量2的超平面H将x3错分.2.x3与矢量2相加得矢量3,垂直于矢量3的超平面H1,将x1错分.3.依上法得矢量4,垂直于矢量4做超平面,H2将x3错分 4.x3与矢量4相加得矢量5,矢量5在解区内,垂直于矢量
7、5的超平面可以把 x1,x2,x3分成一类。x1x2x32H3H14H25W区间现在学习的是第14页,共48页+n感知器算法:1.错误分类修正wk 如wkTx0并且x1 wk+1=wk-kx 如wkTx0并且x2 wk+1=wk-kx2.正确分类,wk不修正如wkTx0并且x1如wkTx0并且x2wk+1=wk+-Hwk+1kxwk权值修正过程现在学习的是第15页,共48页nk选择准则 固定增量原则 k固定非负数绝对修正规则 k 部分修正规则 k=02现在学习的是第16页,共48页例题:有两类样本 1=(x1,x2)=(1,0,1),(0,1,1)2=(x3,x4)=(1,1,0),(0,1,
8、0)解:先求四个样本的增值模式 x1=(1,0,1,1)x2=(0,1,1,1)x3=(1,1,0,1)x4=(0,1,0,1)假设初始权向量w1=(1,1,1,1)k=1第一次迭代:w1Tx1=(1,1,1,1)(1,0,1,1)T=30 所以不修正 w1Tx2=(1,1,1,1)(0,1,1,1)T=30 所以不修正 w1Tx3=(1,1,1,1)(1,1,0,1)T=30 所以修正w1 w2=w1-x3=(0,0,1,0)w2Tx4=(0,0,1,0)T(0,1,0,1)=0 所以修正w2 w3=w2-x4=(0,-1,1,-1)第一次迭代后,权向量w3=(0,-1,1,-1),再进行第
9、2,3,次迭代如下表现在学习的是第17页,共48页直到在一个迭代过程中权向量相同,训练结束。w6=w=(0,1,3,0)判别函数g(x)=-x2+3x3n感知器算法只对线性可分样本有收敛的解,对非线性可分样本集会造成训练过程的振荡,这是它的缺点.训练样本训练样本wkTx修正式修正式修正后的权值修正后的权值wk1迭代次数迭代次数x1 1 0 1 1x2 0 1 1 1x3 1 1 0 1x4 0 1 0 1+0w1w1w1-x3w2-x41 1 1 11 1 1 10 0 1 00 1 1 -1 1x1 1 0 1 1x2 0 1 1 1x3 1 1 0 1x4 0 1 0 10+0-w3+x1
10、w4w4-x3w51 1 2 01 1 2 00 2 2 10 2 2 -1 2x1 1 0 1 1x2 0 1 1 1x3 1 1 0 1x4 0 1 0 1+-w5w5+x2w6w60 2 2 10 1 3 00 1 3 00 1 3 0 3x1 1 0 1 1x2 0 1 1 1x3 1 1 0 1x4 0 1 0 1+-w6w6w6w60 1 3 00 1 3 00 1 3 00 1 3 04现在学习的是第18页,共48页线性不可分样本集的分类解(取近似解)对于线性可分的样本集,可以用上述方法解到正确分类的权向量。当样本集线性不可分时,用上述方法求权值时算法不收敛。如果我们把循环的权向
11、量取平均值作为待求的权向量,或就取其中之一为权向量,一般可以解到较满意的近似结果。例:在样本1:X1=(0,2)X3=(2,0)X5=(-1,-1)2:X2=(1,1)X4=(0,-2)X6=(-2,0)求权向量的近似解x2x1x6x1x32x52x4x211H现在学习的是第19页,共48页解:此为线性不可分问题,利用感知器法求权向量权向量产生循环(-1,2,0),(0,2,2),(-1,1,1),(-1,1,1)(-1,1,1),(0,0,0),(-1,2,0)因此算法不收敛,我们可以取循环中任一权值,例如取W=(0,2,2)T则判别函数为:g(x)=2x1+2x2判别面方程为:g(x)=2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模式识别 导论
限制150内