方程的根与函数的零点 (2)课件.ppt
《方程的根与函数的零点 (2)课件.ppt》由会员分享,可在线阅读,更多相关《方程的根与函数的零点 (2)课件.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于方程的根与函数的零点(2)第1页,此课件共21页哦问题情境问题情境:(1)y=x(1)y=x2 2+2x-3+2x-3与与x x2 2+2x-3=0+2x-3=0(2)y=x(2)y=x2 2+2x+1+2x+1与与x x2 2+2x+1=0+2x+1=0(3)y=x(3)y=x2 2+2x+3+2x+3与与x x2 2+2x+3=0+2x+3=0问题问题1 1:下列二次函数的图象与下列二次函数的图象与x x轴交点和相应方程的轴交点和相应方程的根有何关系?根有何关系?第2页,此课件共21页哦 方程方程x22x+1=0 x22x+3=0y=x22x3y=x22x+1函数函数函函数数的的图图象
2、象方程的实数根方程的实数根x1=1,x2=3x1=x2=1无实数根无实数根函数的图象函数的图象与与x轴的交点轴的交点(1,0)、(3,0)(1,0)无交点无交点x22x3=0 xy01321121234.xy0132112543.yx012112y=x22x+3第3页,此课件共21页哦方程方程ax2+bx+c=0(a0)的根的根函数函数y=ax2+bx+c(a0)的图象的图象判别式判别式=b24ac0=00函数的图象函数的图象与与 x 轴的交点轴的交点有两个相等的有两个相等的实数根实数根x1=x2没有实数根没有实数根xyx1x20 xy0 x1xy0(x1,0),(x2,0)(x1,0)没有交
3、点没有交点两个不相等两个不相等的实数根的实数根x1、x2问题问题2:2:二次函数二次函数y=axy=ax2 2+bx+c(a0)+bx+c(a0)的图象与的图象与x x轴交点和相轴交点和相应一元二次方程应一元二次方程axax2 2+bx+c=0(a0)+bx+c=0(a0)的根有何关系的根有何关系?结论结论:二次函数图象与二次函数图象与x x轴交点的横坐标轴交点的横坐标就是相应方程的实数根。就是相应方程的实数根。第4页,此课件共21页哦 对于函数对于函数y=f(x),我们把使我们把使f(x)=0的实数的实数x叫做函数叫做函数y=f(x)的零点。的零点。方程方程f(x)=0有实数根有实数根函数函
4、数y=f(x)的图象与的图象与x轴有交点轴有交点函数函数y=f(x)有零点有零点函数零点的定义:函数零点的定义:函数零点的定义:函数零点的定义:等价关系等价关系第5页,此课件共21页哦观察二次函数观察二次函数f(x)=x22x3的图象的图象:2,1 f(2)0 f(1)0 f(2)f(1)0(2,1)x1 x22x30的一个根的一个根 2,4 f(2)0 f(2)f(4)0(2,4)x3 x22x30的另一个根的另一个根.xy0132112123424观察对数函数观察对数函数f(x)=lgx的图象的图象:0.5,1.5 f(0.5)0 f(0.5)f(1.5)0(0.5,1.5)x1 lgx=
5、0的一个根的一个根.xy0121.第6页,此课件共21页哦 如果函数如果函数y=f(x)在区间在区间a,b上的图象是连续上的图象是连续不断的一条曲线不断的一条曲线,并且有,并且有f(a)f(b)0,那么,函,那么,函数数y=f(x)在区间在区间(a,b)内有零点,即存在内有零点,即存在c(a,b),使得,使得f(c)=0,这个,这个c也就是方程也就是方程f(x)=0的根。的根。注注:只要满足上述两个条件只要满足上述两个条件,就能判断函数在就能判断函数在就能判断函数在就能判断函数在指定区间内存在零点。指定区间内存在零点。指定区间内存在零点。指定区间内存在零点。x xy y0 0a ab b.第7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方程的根与函数的零点 2课件 方程 函数 零点 课件
限制150内