算法分析设计递归与分治策略幻灯片.ppt
《算法分析设计递归与分治策略幻灯片.ppt》由会员分享,可在线阅读,更多相关《算法分析设计递归与分治策略幻灯片.ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、算法分析设计递归与分治策略第1页,共20页,编辑于2022年,星期一算法总体思想分治法的设计思想是,将一个难以直接解决的大问题,分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的问题,以便各个击破,分而治分割成一些规模较小的问题,以便各个击破,分而治之。之。如果由分治法产生的子问题是原问题的较小规模,如果由分治法产生的子问题是原问题的较小规模,则可以用递归技术解决。则可以用递归技术解决。第2页,共20页,编辑于2022年,星期一将要求解的较大规模的问题分割成k个更小规模的子问题。算法总体思想nT(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)
2、T(n/2)T(n)=对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。第3页,共20页,编辑于2022年,星期一算法总体思想将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)
3、T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)第4页,共20页,编辑于2022年,星期一算法总体思想将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)
4、T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)第5页,共20页,编辑于2022年,星期一2.1 递归的概念直接或间接地调用自身的算法称为递归算法递归算法。用函数自身给出定义的函数称为递归函数递归函数。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。下面来看几个实例。第6页,共20页,编辑于2022年,星期一2.1 递归的概念
5、例例1 1 阶乘函数阶乘函数阶乘函数可递归地定义为:边界条件边界条件递归方程递归方程边界条件(非递归定义)与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。第7页,共20页,编辑于2022年,星期一2.1 递归的概念例例4 排列问题排列问题设计一个递归算法生成n个元素r1,r2,rn的全排列。设R=r1,r2,rn是要进行排列的n个元素,Ri=R-ri。集合X中元素的全排列记为perm(X)。(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:当n=1时,perm(R)=(r),其中r是集合R中唯一
6、的元素;当n1时,perm(R)由(r1)perm(R1),(r2)perm(R2),(rn)perm(Rn)构成。第8页,共20页,编辑于2022年,星期一2.2 分治法的基本思想分治法所能解决的问题一般具有以下几个特征:分治法所能解决的问题一般具有以下几个特征:该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质最优子结构性质利用该问题分解出的子问题的解可以合并为该问题的解;该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。这条
7、特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算贪心算法法或动态规划动态规划。这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划动态规划较好。分治法的适用条件:分治法的适用条件:第9页,共20页,编辑于2022年,星期一分治法的复杂性分析:分治法的复杂性分析:一个分治法将规模为n的问题分成k个规模为nm的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个
8、单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:通过迭代法求得方程的解:注意注意:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当minmi+1时,T(mi)T(n)T(mi+1)。第10页,共20页,编辑于2022年,星期一2.3 二分搜索技术分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中。因此这个问题满足
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 算法 分析 设计 递归 分治 策略 幻灯片
限制150内