《平面与平面平行的判定公开课讲稿.ppt》由会员分享,可在线阅读,更多相关《平面与平面平行的判定公开课讲稿.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于平面与平面平行的判定公开课第一页,讲稿共三十一页哦复习回顾:复习回顾:平面平面平面平面外外外外一条直线与此平面一条直线与此平面一条直线与此平面一条直线与此平面内内内内的一条直线的一条直线的一条直线的一条直线平行平行平行平行,则该直线与此,则该直线与此,则该直线与此,则该直线与此平面平行平面平行平面平行平面平行(2 2 2 2)直线与平面平行的判定定理:)直线与平面平行的判定定理:)直线与平面平行的判定定理:)直线与平面平行的判定定理:(1 1)定义法;)定义法;直线与平面没有交点直线与平面没有交点线线平行线线平行线面平行线面平行1.1.到现在为止,我们一共学习过几种判断直线与平面平行的方法
2、呢?(文字语言文字语言)(符号语言符号语言)(图形语言图形语言)外外平行平行内内第二页,讲稿共三十一页哦(1 1)平行)平行(2 2)相交)相交 2.2.平面与平面有几种位置关系?分别是什么?平面与平面有几种位置关系?分别是什么?复习回顾复习回顾第三页,讲稿共三十一页哦创设情景创设情景 孕育新知孕育新知1 1、你知道建筑师是如何检验屋顶平面与水平面平行的吗?、你知道建筑师是如何检验屋顶平面与水平面平行的吗?第四页,讲稿共三十一页哦2 2、一个木工师傅要从、一个木工师傅要从A A处锯开一个三棱锥木料,处锯开一个三棱锥木料,要使截面和底面平行,想请你帮他画线,你会画吗?要使截面和底面平行,想请你帮
3、他画线,你会画吗?创设情景创设情景 孕育新知孕育新知A第五页,讲稿共三十一页哦 判定方法判定方法1:定义法:定义法如果两平面没有公共点,那么两平面平行如果两平面没有公共点,那么两平面平行 实质实质:其中一个平面内任何一条直线都平行:其中一个平面内任何一条直线都平行于另一平面于另一平面 平面与平面平行的判定方法平面与平面平行的判定方法师生协助师生协助 探索新知探索新知 不可能把其中一个平面内所有直线不可能把其中一个平面内所有直线都取出逐一证明其平行另一平面。都取出逐一证明其平行另一平面。无限有限第六页,讲稿共三十一页哦1 1、平面、平面内有内有一条直线一条直线与平面与平面平行,平面平行,平面,一
4、一定平行吗?定平行吗?(不一定)(不一定)2 2、平面、平面内有内有两条直线两条直线与平面与平面平行,平面平行,平面,一一定平行吗?定平行吗?(不一定)(不一定)第七页,讲稿共三十一页哦思考思考1 1:三角板的一条边所:三角板的一条边所在直线与桌面平行,这个三在直线与桌面平行,这个三角板所在平面与桌面平行吗?角板所在平面与桌面平行吗?思考思考2 2:三角板的两条边所在直线分别与桌:三角板的两条边所在直线分别与桌面平行,三角板所在平面与桌面平行吗?面平行,三角板所在平面与桌面平行吗?A A实践操作第八页,讲稿共三十一页哦直线的条数不是关键直线的条数不是关键直线相交才是关键直线相交才是关键第九页,
5、讲稿共三十一页哦通过上述分析,通过上述分析,我们可以得到判定我们可以得到判定平面与平面平行的一个定理,平面与平面平行的一个定理,你能用文字语言表述出该定理的内容吗?你能用文字语言表述出该定理的内容吗?第十页,讲稿共三十一页哦平面与平面平行的判定定理平面与平面平行的判定定理:如果如果一个平面一个平面内内的两条相的两条相交交直线直线与另一个平面与另一个平面平行平行,则这两个平,则这两个平面平行面平行.P第十一页,讲稿共三十一页哦上述定理通常称为上述定理通常称为平面与平面平行的判定定理平面与平面平行的判定定理,该定理用符号语言可怎样表述?该定理用符号语言可怎样表述?abP且且线面平行线面平行面面平行
6、面面平行第十二页,讲稿共三十一页哦上述定理如何证明上述定理如何证明证明:假设证明:假设=l a/a a/a与与没有公共点没有公共点 a与与l也没有公共点又也没有公共点又a与与l在同一个平面内,在同一个平面内,a l同理同理b b l,abab,这与,这与a ab=P相矛盾相矛盾/lab反证法反证法已知:已知:a,b。求证:。求证:第十三页,讲稿共三十一页哦在平面与平面平行的判定定理中,在平面与平面平行的判定定理中,“a a,b,b”,可用什么条件替代?由此可,可用什么条件替代?由此可得什么推论?得什么推论?推论推论 如果一个平面如果一个平面内有两条相交直线分内有两条相交直线分别平行于另一个平面
7、别平行于另一个平面内的两条直线,那么内的两条直线,那么这两个平面平行这两个平面平行.a ab b第十四页,讲稿共三十一页哦定理的理解定理的理解:练习练习.1判断下列命题是否正确,正确的说明理由,错误判断下列命题是否正确,正确的说明理由,错误的举例说明:的举例说明:(1)已知平面已知平面 和直线和直线,若若 ,则,则(2)一个平面一个平面 内两条不平行的直线都平行于另一平面内两条不平行的直线都平行于另一平面 ,则,则错误错误正确正确mnP第十五页,讲稿共三十一页哦2、平面和平面平行的条件可以是(平面和平面平行的条件可以是()(A)内有无数多条直线都与内有无数多条直线都与 平行平行(B)直线直线
8、,(C)直线直线 ,直线,直线 ,且,且(D)内的任何一条直线都与内的任何一条直线都与 平行平行D定理的理解定理的理解:第十六页,讲稿共三十一页哦阅读阅读已知正方体已知正方体ABCD-A1B1C1D1,求证:平面求证:平面AB1D1 平面平面C1BD.合作交流合作交流 运用新知运用新知第十七页,讲稿共三十一页哦证明:证明:ABCD-A1B1C1D1是正方体是正方体,D1C1/A1B1,D1C1=A1B1,AB/A1B1,AB=A1B1,D1C1/AB,D1C1=AB,四边形四边形D1C1BA为平行四边形为平行四边形,D1A/C1B,又又D1A平面平面C1BD,C1B平面平面C1BD,D1A/平
9、面平面C1BD,同理同理D1B1/平面平面C1BD,又又D1AD1B1=D1,D1A平面平面AB1D1,D1B1平面平面AB1D1,平面平面AB1D1/平面平面C1BD.第十八页,讲稿共三十一页哦P PA AB BC CD DE EF F例例2 2 在三棱锥在三棱锥P-ABCP-ABC中,点中,点D D、E E、F F分别是分别是PABPAB、PBCPBC、PACPAC的重心,求证:的重心,求证:平面平面DEF/DEF/平面平面ABC.ABC.MN NO证明:连结证明:连结PD并延长交并延长交AB于点于点M连结连结PE并延长交并延长交BC于点于点N,连结连结PF并延长交并延长交AC于于O,连结
10、连结MN,MO D,E分别为分别为 PAB、PBC的重心的重心 DE MN又又 DE面面ABC,MN面面ABC DE 面面ABC,同理:,同理:DF 面面ABC又又 DEDF=D 面面DEF 面面ABC第十九页,讲稿共三十一页哦例例3 如图,在正方体ABCDA1B1C1D1中,E、F、G分别是棱BC、C1D1、C1B1的中点。求证:面EFG/平面BDD1B1.G证明:证明:F F、G G分别的分别的C C1 1D D1 1、C C1 1B B1 1的中点的中点 FGFG是是CC1 1D D1 1B B1 1的中位线的中位线 FGDFGD1 1B B1 1 又又 FG FG 平面平面BDDBDD
11、1 1B B1 1 D D1 1B BI I 平面平面BDDBDD1 1B B1 1 FG FG平面平面BDDBDD1 1B B1 1 ABCDA ABCDA1 1B B1 1C C1 1D D1 1为正方体为正方体 B B1 1C C1 1BCBC,B B1 1C C1 1BCBC 又又 G G、E E分别是分别是B B1 1C C1 1、BCBC的中点的中点 B B1 1GBE BGBE B1 1G=BEG=BE 四边形四边形B B1 1BEGBEG是平行四边形是平行四边形 GEBGEB1 1B B 又又 GE GE 平面平面BDDBDD1 1B B1 1 B B1 1B B 平面平面BD
12、DBDD1 1B B1 1 GE GE 平面平面BDDBDD1 1B B1 1 又又 FG GE=GFG GE=G 面面EFG/EFG/平面平面BDDBDD1 1B B1 1.思路:只要证明一个平面内有两条相交的直线与另一个平面平行第二十页,讲稿共三十一页哦第一步第一步:在一个平面内找出两条相交直线;:在一个平面内找出两条相交直线;第二步第二步:证明两条相交直线分别平行于另一个平面。:证明两条相交直线分别平行于另一个平面。第三步第三步:利用判定定理得出结论。:利用判定定理得出结论。面面平行面面平行线线平行线线平行线面平行线面平行3 3、证明的书写三个条件证明的书写三个条件“内内”、“交交”、“
13、平行平行”,缺一不缺一不可。可。1、证明的两个平面平行的基本思路:、证明的两个平面平行的基本思路:2、证明的两个平面平行的一般步骤:、证明的两个平面平行的一般步骤:第二十一页,讲稿共三十一页哦1 1、在正方体、在正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,若中,若 M M、N N、E E、F F分别是棱分别是棱A A1 1B B1 1,A A1 1D D1 1,B B1 1C C1 1,C C1 1D D1 1的中点,求证:平面的中点,求证:平面AMN/AMN/平面平面EFDBEFDB。变式训练变式训练ABCA1B1C1D1DMNEF第二十二页,讲稿共三十一页哦
14、2 2、已知、已知:在正方体在正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中中,E,E、F F分别是分别是CCCC1 1、AAAA1 1的中点,求证的中点,求证:平面平面BDE/BDE/平面平面B B1 1D D1 1F FAD1DCBA1B1C1EFG变式训练变式训练第二十三页,讲稿共三十一页哦D1C1B1A1DCBA变式训练变式训练3、已知正方体、已知正方体ABCD-A1B1C1D1,求证:平面,求证:平面AB1C 平面平面A1C1D第二十四页,讲稿共三十一页哦4.4.正方体正方体 ABCD-AABCD-A1 1B B1 1C C1 1D D1 1 中中,求证求
15、证:平面平面ABAB1 1D D1 1/平面平面C C1 1BDBDAD1DCBA1B1C1变式训练变式训练第二十五页,讲稿共三十一页哦5 5、如图三棱锥、如图三棱锥P-ABC,D,E,FP-ABC,D,E,F分别是棱分别是棱PAPA,PBPB,PCPC上的点,上的点,求证:平面求证:平面DEFDEF平面平面ABCABC。PDEFBCA变式训练变式训练第二十六页,讲稿共三十一页哦NMFEDCBAH6、如图所示,平面如图所示,平面ABCD平面平面EFCD=CD,M、N、H分别是分别是DC、CF、CB的中点,的中点,求证求证平面平面MNH/平面平面DBF第二十七页,讲稿共三十一页哦2、一个木匠师傅要从、一个木匠师傅要从A处锯开一个三棱锥木料,处锯开一个三棱锥木料,要使截面和底面平行,想请你帮他画线,你会画吗?要使截面和底面平行,想请你帮他画线,你会画吗?运用新知运用新知 解决问题解决问题A第二十八页,讲稿共三十一页哦2、一个木匠师傅要从、一个木匠师傅要从A处锯开一个三棱锥木料,处锯开一个三棱锥木料,要使截面和底面平行,想请你帮他画线,你会画吗?要使截面和底面平行,想请你帮他画线,你会画吗?运用新知运用新知 解决问题解决问题A第二十九页,讲稿共三十一页哦运用新知运用新知 解决问题解决问题第三十页,讲稿共三十一页哦感谢大家观看第三十一页,讲稿共三十一页哦
限制150内