2020年中考数学复习备考课件(人教版)专题六 二次函数压轴题(免费下载).ppt
《2020年中考数学复习备考课件(人教版)专题六 二次函数压轴题(免费下载).ppt》由会员分享,可在线阅读,更多相关《2020年中考数学复习备考课件(人教版)专题六 二次函数压轴题(免费下载).ppt(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题六二次函数压轴题,1.主要类型:(1)线段及周长最值问题(2)面积最值问题(3)存在性问题探究,2.规律方法:(1)解决线段和的最小值或三角形周长最小问题,主要依据是“两点之间,线段最短”,具体方法是利用轴对称将两条线段之和转化为一条线段的长,然后求出该条线段的长.,(2)解决图形面积的最值问题,通常先设出动点坐标,然后表示出图形面积,利用二次函数性质来求最大值或最小值,表示不规则图形的面积时,通常采用割补法把其转化为易于表示面积的图形(有一边在坐标轴上或平行于坐标轴).,(3)解决存在性问题要先假设结论成立,然后根据所探究特殊图形的有关性质,利用分类讨论的数学思想构造全等或相似图形,进而
2、求出字母的取值.3.渗透的思想:分类讨论、转化思想、数形结合、函数与方程等.,类型一线段及周长最值问题【考点解读】1.考查范畴:线段和周长最值问题主要包括线段和的最小值、周长和的最小值和线段差的最大值三种情况.,2.考查角度:利用二次函数解析式确定有关点的坐标,结合某个动点考查两条线段和或差的最值问题.,【典例探究】典例1(2018宜宾节选)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y= x与抛物线交于A,B两点,直线l为y=-1.,(1)求抛物线的解析式.(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说
3、明理由.,【思路点拨】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式.,(2)联立直线AB与抛物线解析式组成方程组,通过解方程组可求出点A,B的坐标,作点B关于直线l的对称点B,连接AB交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B的坐标,根据点A,B的坐标利用待定系数法可求出直线AB的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.,【自主解答】略,【规律方法】解决线段和最小值问题的方法(1)解题的基本依据是“两点之间,线段最短”,如图所示,若A,B是两个定点,动点P在
4、直线m上,求PA+PB的最小值的方法是:作点A关于直线m的对称点A,当A,P,B三点共线时PA+PB最小.,(2)确定动点P的位置后,再根据两条直线的解析式联立组成方程组,进而求出交点P的坐标.,【题组过关】1.(2019烟台中考)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(-1,0),B两点,与y轴交于点C,过点C作CDy轴交抛物线于另一点D,作DEx轴,垂足为点E,双曲线y= (x0)经过点D,连接MD,BD.,(1)求抛物线的解析式.(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标.(3)动点P从点O出发,以每秒1个单位长
5、度的速度沿OC方向运动,运动时间为t秒,当t为何值时,BPD的度数最大?(请直接写出结果),略,2.(2019贺州中考)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a0)图象经过A,B,C三点.世纪金榜导学号,(1)求A,C两点的坐标.(2)求抛物线的解析式.(3)若点P是直线AC下方的抛物线上的一个动点,作PDAC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.,【解析】(1)OA=OC=4OB=4,故点A,C的坐标分别为(4,0),(0,-4).(2)抛物线的解析式为:y=a(x+1)(x-4)=a(x2-3x-4),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年中考数学复习备考课件(人教版)专题六二次函数压轴题(免费下载)
限制150内