恒成立与存在性问题的基本解题策略(共18页).doc
《恒成立与存在性问题的基本解题策略(共18页).doc》由会员分享,可在线阅读,更多相关《恒成立与存在性问题的基本解题策略(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:恒成立;2、能成立问题的转化:能成立;3、恰成立问题的转化:在M上恰成立的解集为M另一转化方法:若在D上恰成立,等价于在D上的最小值,若在D上恰成立,则等价于在D上的最大值.4、设函数、,对任意的,存在,使得,则5、设函数、,对任意的,存在,使得,则6、设函数、,存在,存在,使得,则7、设函数、,存在,存在,使得,则8、设函数、,对任意的,存在,使得,设f(x)在区间a,b上的值域为A,g(x)在区间c,d上的值域为B,则A
2、B.9、若不等式在区间D上恒成立,则等价于在区间D上函数和图象在函数图象上方;10、若不等式在区间D上恒成立,则等价于在区间D上函数和图象在函数图象下方;恒成立问题的基本类型 在数学问题研究中经常碰到在给定条件下某些结论函数在给定区间上某结论成立问题,其表现形式通常有:j在给定区间上某关系恒成立;k某函数的定义域为全体实数R;l某不等式的解为一切实数;m某表达式的值恒大于a等等恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。恒成立问题
3、在解题过程中大致可分为以下几种类型:一次函数型;二次函数型;变量分离型;根据函数的奇偶性、周期性等性质;直接根据函数的图象。二、恒成立问题解决的基本策略 大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。(一)两个基本思想解决“恒成立问题”思路1、 思路2、如何在区间D上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f(x)的最
4、值。这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。(二)、赋值型利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1如果函数y=f(x)=sin2x+acos2x的图象关于直线x= 对称,那么a=( ).A.1 B.-1 C . D. -.略解:取x=0及x=,则f(0)=f(),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想.例(备用)由等式x4+a1x3+a2x2+a3x+a4= (x+1)4+b1(x+1)3+ b2(x+1)2+b3(
5、x+1)+b4 定义映射f:(a1,a2,a3,a4)b1+b2+b3+b4,则f:(4,3,2,1) ( )A.10 B.7 C.-1 D.0略解:取x=0,则 a4=1+b1+b2+b3+b4,又 a4=1,所以b1+b2+b3+b4 =0 ,故选D(三)分清基本类型,运用相关基本知识,把握基本的解题策略1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a0),若y=f(x)在m,n内恒有f(x)0,则根据函数的图象(直线)可得上述结论等价于 同理,若在m,n内恒有f(x)2a+x恒成立的x的取值范围.分析:在不等式中
6、出现了两个字母:x及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a视作自变量,则上述问题即可转化为在-2,2内关于a的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x2-2x+10在|a|2时恒成立,设f(a)= (x-1)a+x2-2x+1,则f(a)在-2,2上恒大于0,故有:即解得:x3. 即x(,1)(3,+)此类题本质上是利用了一次函数在区间m,n上的图象是一线段,故只需保证该线段两端点均在x轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用。(1)若二次函
7、数y=ax2+bx+c(a0)大于0恒成立,则有(2)若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解。类型1:设在R上恒成立,(1) 上恒成立;(2)上恒成立。类型2:设在区间上恒成立(1) 当时,上恒成立,上恒成立(2) 当时,上恒成立上恒成立类型3:设在区间 (- , a上恒成立。f(x)0a0且Da且f(a)0f(x)0a0且Da且f(a)0a0,D0或-b/2a0f(x)0a0,D0或-b/2aa且f(a)g(a)恒成立,则g(a)f(x)min;若对于x取值范围内的任何一个数,都有f(x)f(x)max.(其中f(x)max和f(x)min分别为f(x)的
8、最大值和最小值)例5.已知三个不等式,要使同时满足的所有x的值满足,求m的取值范围.略解:由得2x3;,构造函数,画出图象,得a3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.例8. 设常数aR,函数f(x)=3|x|+|2x-a|,g(x)=2-x.若函数y=f(x)与y=g(x)的图像有公共点,则a的取值范围为。解:1)a=0x=a/2=0时,f(x)=-3x+(-2x+a)=-5x+aa/2=x=0时,f(x)=3x+(2x-a)=5x-a,最小值为-a=2则与g(x)有交点,即:-2=
9、a0x=0时,f(x)=-3x+(-2x+a)=-5x+a0=x=a/2时,f(x)=3x+(2x-a)=5x-a最小值a=2时与g(x)有交点,即:0a=2综上所述,-2=a=2时f(x)=3|x|+|2x-a|与g(x)=2-x有交点。三、在恒成立问题中,主要是求参数的取值范围问题,是一种热点题型,介绍一些基本的解题策略,在学习中学会把问题分类、归类,熟练基本方法。(一)换元引参,显露问题实质 1、对于所有实数x,不等式恒成立,求a的取值范围。 解:因为的值随着参数a的变化而变化,若设,则上述问题实质是“当t为何值时,不等式恒成立”。这是我们较为熟悉的二次函数问题,它等价于求解关于t的不等
10、式组:。 解得,即有,易得。2、设点P(x,y)是圆上任意一点,若不等式x+y+c0恒成立,求实数c的取值范围。(二)分离参数,化归为求值域问题 3、若对于任意角总有成立,求m的范围。解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立。根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最小值。因为 即时,有最小值为0,故。(三)变更主元,简化解题过程 4、若对于,方程都有实根,求实根的范围。 解:此题一般思路是先求出方程含参数m的根,再由m的范围来确定根x的范围,但这样会遇到很多麻烦,若以m为主元,则, 由原方程知,得 又,即解之得或。5、当时,若不等式恒成立,求的取值
11、范围。(四)图象解题,形象直观 6、设,若不等式恒成立,求a的取值范围。 解:若设,则为上半圆。设,为过原点,a为斜率的直线。在同一坐标系内 作出函数图象依题意,半圆恒在直线上方时,只有时成立,即a的取值范围为。7、当x(1,2)时,不等式(x-1)2logax恒成立,求a的取值范围。解:设y1=(x-1)2,y2=logax,则y1的图象为右图所示的抛物线要使对一切x (1,2),y11,并且必须也只需当x=2时y2的函数值大于等于y1的函数值。故loga21, 10,注意到若将等号两边看成是二次函数y= x2+4x及一次函数y=2x-6a-4,则只需考虑这两个函数的图象在x轴上方恒有唯一交
12、点即可。解:令y1=x2+4x=(x+2)2-4,y2=2x-6a-4, y1的图象为一个定抛物线 y2的图象是k=2,而截距不定的直线,要使y1和y2在x轴上方有唯一交点,则直线必须位于l1和l2之间。(包括l1但不包括l2)当直线为l1时,直线过点(-4,0),此时纵截距为-8-6a-4=0,a=;当直线为l2时,直线过点(0,0),纵截距为-6a-4=0,a=a的范围为(五)合理联想,运用平几性质 9、不论k为何实数,直线与曲线恒有交点,求a的范围。分析:因为题设中有两个参数,用解析几何中有交点的理论将二方程联立,用判别式来解题是比较困难的。若考虑到直线过定点A(0,1),而曲线为圆,圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成立 存在 问题 基本 解题 策略 18
限制150内