初中数学竞赛辅导资料(63)动态几何的定值(共4页).doc
《初中数学竞赛辅导资料(63)动态几何的定值(共4页).doc》由会员分享,可在线阅读,更多相关《初中数学竞赛辅导资料(63)动态几何的定值(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上动态几何的定值甲内容提要1. 动态几何是指用运动的观点研究几何图形的位置、大小的相互关系.用动的观点看几何定理,常可把几个定理归为一类.例如: 梯形的中位线,当梯形的上底逐渐变小,直到长度为零时,则为三角形的中位线; 两圆相交,两个公共点关于连心线对称,所以连心线垂直平分公共弦,当两个交点距离逐渐变小,直到两点重合时,则两圆相切,这时切点在连心线上; 相交弦定理由于交点位置、个数的变化,而演变为割线定理,切割线定理,切线长定理等等.2. 动态几何的轨迹、极值和定值.几何图形按一定条件运动,有的几何量随着运动的变化而有规律变化,这就出现了轨迹和极值问题,而有的量却始终保
2、持不变,这就是定值问题.例如:半径等于RA的圆A与半径为RB(RBRA)的定圆B内切.那么:动点A有规律地变化,形成了一条轨迹:以B为圆心,以RBRA的长为半径的圆.而A,B两点的距离,却始终保持不变:AB=RBRA.若另有一个半径为RC的圆 C与圆B外切,则A,C两点的距离变化有一定的范围: RB+RC(RBRA)ACRB+RC+(RBRA).即RC+RAAC2RB+RCRA . 所以AC有最大值:2RB+RCRA ; 且有最小值:RC+RA.3. 解答动态几何定值问题的方法,一般有两种: 第一种是分两步完成 : 先探求定值.它要用题中固有的几何量表示. 再证明它能成立.探求的方法,常用特殊
3、位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明. 第二种是采用综合法,直接写出证明.乙例题例1.已知:ABC中,ABAC,点P是BC上任一点,过点P作BC的垂线分别交AB,AC或延长线于E,F.求证:PEPF有定值.例2.已知:同心圆为O中,AB是大圆的直径,点P在小圆上求证:PA2PB2有定值.例3.已知:ABC中,ABAC,点P在中位线MN上,BP,CP的延长线分别交AC,AB于E,F.求证:有定值, 例4.已知:在以AB为弦的弓形劣弧上取一点M(不包括A、B两点),以M为圆心作圆M和AB相切,分别过A,B作M的切线,两条切线相交于点C.求证:ACB有定值.,.丙练习6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 竞赛 辅导资料 63 动态 几何
限制150内