2021年中考数学必考点对点突破的55个特色专题专题53 中考几何动态试题解法(原卷版)(免费下载).docx
《2021年中考数学必考点对点突破的55个特色专题专题53 中考几何动态试题解法(原卷版)(免费下载).docx》由会员分享,可在线阅读,更多相关《2021年中考数学必考点对点突破的55个特色专题专题53 中考几何动态试题解法(原卷版)(免费下载).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题53 中考几何动态试题解法一、动态问题概述数1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。怎2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。怎样3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。二、动点与
2、函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。、3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。怎样解决好4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。三、图形运动与函数图象问题常见的三种类型寸1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图
3、象。2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。怎样解决好中考数3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。四、动点问题常见的四种类型解题思路1.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿
4、反复倾听,在反复倾听中体验、品味。1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。2.四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系。3.这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用
5、乱翻参考书吗?3.圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系。4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题。五、解决动态问题一般步骤(1)用数量来刻画运动过程。因为在不同的运动阶段,同一个量的数学表达方式会发生变化,所以需要分类讨论。有时符合试题要求的情况不止一种,这时也需要分类讨论。(2)画出符合题意的示意图。(3)根据试题的已知条件或者要求列出算式、方程或者数量间的关系式。【例题1】(2020连云港)如图,在平面直角坐标系xOy中,半径为2的O与x轴的正半轴交于点A,点B是O上一动点,
6、点C为弦AB的中点,直线y=34x3与x轴、y轴分别交于点D、E,则CDE面积的最小值为 【对点练习】(2020年浙江台州模拟)如图所示,在ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A6 B2+1 C9 D【例题2】(2020重庆)如图,在RtABC中,BAC90°,ABAC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE点F是DE的中点,连接CF(1)求证:CF=22AD;(2)如图2所示,在点D运动的过程中,当
7、BD2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长【对点练习】如图,在菱形ABCD中,对角线AC、BD相交于点O,AB4,DAB120°,动点P从点A出发,以每秒2个单位的速度沿AC向终点C运动过P作PEAB交AB于点E,作PFAD交AD于点F,设四边形AEPF与ABD的重叠部分的面积为S,点P的运动时间为t(1)用含t的代数式表示线段BE的长;(2)当点P与点O重合时,求t的值;(3
8、)求S与t之间的函数关系式;(4)在点P出发的同时,有一点Q从点C出发,以每秒6个单位的速度沿折线CDAB运动,设点Q关于AC的对称点是Q',直接写出PQ'与菱形ABCD的边垂直时t的值【例题3】(2020苏州)如图,已知MON90°,OT是MON的平分线,A是射线OM上一点,OA8cm动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动连接PQ,交OT于点B经过O、P、Q三点作圆,交OT于点C,连接PC、QC设运动时间为t(s),其中0t8(1)求OP+OQ的值;(2)是否存在实数t,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年中考数学必考点对点突破的55个特色专题专题53中考几何动态试题解法(原卷版)(免费下载)
链接地址:https://www.taowenge.com/p-4845272.html
限制150内