2021年中考数学必考点对点突破的55个特色专题专题14 角平分线问题(解析版)(免费下载).docx
《2021年中考数学必考点对点突破的55个特色专题专题14 角平分线问题(解析版)(免费下载).docx》由会员分享,可在线阅读,更多相关《2021年中考数学必考点对点突破的55个特色专题专题14 角平分线问题(解析版)(免费下载).docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题14 角平分线问题1.角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是AOB的平分线,所以1=2=AOB,或AOB=21=22.类似地,还有角的三等分线等.2.作角平分线角平分线的作法(尺规作图)以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;过点P作射线OP,射线OP即为所求 3.角平分线的性质(1)定理:角平分线上的点到角的两边的距离相等。符号语言:OP平分AOB,APOA,BPOB,AP=BP.(2)逆定理:到角的两边距离相等的点在角
2、的平分线上。符号语言: APOA,BPOB,AP=BP,点P在AOB的平分线上.注意:三角形的角平分线。三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD是ABC的角平分线,或BADCAD且点D在BC上.说明:AD是ABC的角平分线BADDACBAC (或BAC2BAD2DAC) .(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部; (3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.4.角平分线的综合应用(1)为推导线段相
3、等、角相等提供依据和思路;(2)在解决综合问题中的应用【例题1】(2020襄阳)如图,ABCD,直线EF分别交AB,CD于点E,F,EG平分BEF,若EFG64°,则EGD的大小是()A132°B128°C122°D112°【答案】C【分析】根据平行线的性质得到BEF180°EFG116°,根据角平分线的定义得到BEG=12BEF58°,由平行线的性质即可得到结论【解析】ABCD,EFG64°,BEF180°EFG116°,EG平分BEF交CD于点G,BEG=12BEF58°
4、,ABCD,EGD180°BEG122°【对点练习】(2020长春模拟 )如图,在ABC中,CD平分ACB交AB于点D,过点D作DEBC交AC于点E若A=54°,B=48°,则CDE的大小为()A44° B40° C39° D38°【答案】C【解析】根据三角形内角和得出ACB,利用角平分线得出DCB,再用平行线的性质解答即可A=54°,B=48°,ACB=180°54°48°=78°,CD平分ACB交AB于点D,DCB=78°=39°,
5、DEBC,CDE=DCB=39°,【点拨】本题考查三角形内角和定理、平行线性质、角平分线定义。【例题2】(2020随州)如图,点A,B,C在O上,AD是BAC的角平分线,若BOC120°,则CAD的度数为 【答案】30°【解析】先根据圆周角定理得到BAC=12BOC60°,然后利用角平分线的定义确定CAD的度数BAC=12BOC=12×120°60°,而AD是BAC的角平分线,CAD=12BAC30°【对点练习】(2019四川自贡)如图,在RtABC中,ACB90°,AB10,BC6,CDAB,ABC的平
6、分线BD交AC于点E,DE 【答案】【解析】由CDAB,DABE,DCBE,所以CDBC6,再证明AEBCED,根据相似比求出DE的长ACB90°,AB10,BC6,AC8,BD平分ABC,ABECDE,CDAB,DABE,DCBE,CDBC6,AEBCED,CEAC×83,BE,DEBE×【点拨】本题考查相似三角形性质、勾股定理、角平分线性质。【例题3】(2020金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OEAC于点E,OFBD于点F,OEOF1cm,ACBD6cm,CEDF,CE:AE2
7、:3按图示方式用手指按夹子,夹子两边绕点O转动(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是 cm(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为 cm【答案】(1)16 (2)6013【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题(2)如图3中,连接EF交OC于H想办法求出EF,利用平行线分线段成比例定理即可解决问题解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,OEOF1cm,EF2cm,ABCD2cm,此时四边形ABCD的周长为2+2+6+616(cm)
8、,故答案为16(2)如图3中,连接EF交OC于H由题意CECF=25×6=125(cm),OEOF1cm,CO垂直平分线段EF,OC=CE2+OE2=(125)2+12=135(cm),12OEEC=12COEH,EH=1×125135=1213(cm),EF2EH=2413(cm)EFAB,EFAB=CECB=25,AB=52×2413=6013(cm)故答案为6013【对点练习】已知:点P是MON内一点,PAOM于A,PBON于B,且PAPB求证:点P在MON的平分线上 【答案】见解析。【解析】证明:连结OP在RtPAO和RtPBO中, PA=PB OP=OP
9、 RtPAORtPBO(HL)12OP平分MON即点P在MON的平分线上【点拨】全等三角形性质、角平分线定义。一、选择题1(2020乐山)如图,E是直线CA上一点,FEA40°,射线EB平分CEF,GEEF则GEB()A10°B20°C30°D40°【答案】B【分析】根据平角的定义得到CEF180°FEA180°40°140°,由角平分线的定义可得CEB=12CEF=12×140°=70°,由GEEF可得GEF90°,可得CEG180°AEFGEF180&
10、#176;40°90°50°,由GEBCEBCEG可得结果【解析】FEA40°,GEEF,CEF180°FEA180°40°140°,CEG180°AEFGEF180°40°90°50°,射线EB平分CEF,CEB=12CEF=12×140°=70°,GEBCEBCEG70°50°20°2(2020福建)如图,AD是等腰三角形ABC的顶角平分线,BD5,则CD等于()A10B5C4D3【答案】B【解析】根据
11、等腰三角形三线合一的性质即可求解AD是等腰三角形ABC的顶角平分线,BD5,CD53.如图,在ABC中,C=90°,AD平分BAC,过点D作DEAB于点E,测得BC=9,BE=3,则BDE的周长是( )A.15 B.12 C.9 D.6【答案】B 【解析】在ABC中,C=90°,ACCDAD平分BAC,DEAB,DE=CDBC=9,BE=3,BDE的周长为BE+BD+DE=BE+BD+CD=BE+BC=3+9=124如图,面积为24的ABCD中,对角线BD平分ABC,过点D作DEBD交BC的延长线于点E,DE6,则sinDCE的值为()ABCD【答案】A【解析】连接AC,过
12、点D作DFBE于点E,BD平分ABC,ABDDBC,ABCD中,ADBC,ADBDBC,ADBABD,ABBC,四边形ABCD是菱形,ACBD,OBOD,DEBD,OCED,DE6,OC,ABCD的面积为24,BD8,5,设CFx,则BF5+x,由BD2BF2DC2CF2可得:82(5+x)252x2,解得x,DF,sinDCE故选:A5.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A作APB的平分线PC交AB于点CB过点P作PCAB于点C且AC=BCC取AB中点C,连接PCD过点P作PCAB,垂足为C【答案
13、】B【解析】利用判断三角形全等的方法判断即可得出结论A利用SAS判断出PCAPCB,CA=CB,PCA=PCB=90°,点P在线段AB的垂直平分线上,符合题意;C利用SSS判断出PCAPCB,CA=CB,PCA=PCB=90°,点P在线段AB的垂直平分线上,符合题意;D利用HL判断出PCAPCB,CA=CB,点P在线段AB的垂直平分线上,符合题意,B过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意。6如图,ABC中,AD是BC边上的高,AE、BF分别是BAC、ABC的平分线,BAC=50°,ABC=60°,则EAD+ACD=()A75
14、176;B80°C85°D90°【答案】A【解析】依据AD是BC边上的高,ABC=60°,即可得到BAD=30°,依据BAC=50°,AE平分BAC,即可得到DAE=5°,再根据ABC中,C=180°ABCBAC=70°,可得EAD+ACD=75°AD是BC边上的高,ABC=60°,BAD=30°,BAC=50°,AE平分BAC,BAE=25°,DAE=30°25°=5°,ABC中,C=180°ABCBAC=70
15、176;,EAD+ACD=5°+70°=75°7(2019山东滨州)如图,在正方形ABCD中,对角线相交于点O,BN平分CBD,交边CD于点N,交对角线AC于点M,若OM1,则线段DN的长是多少()A1.5B2CD2【答案】B【解析】作NEBD于E,如图所示:四边形ABCD是正方形,ACBD,ADCBCD90°,ODC45°,OBOD,BCDC,DEN是等腰直角三角形,DENE,DNNE,BN平分CBD,NENC,NENCDE,设NENCDEx,则DNx,DCx+x,BDDC2x+x,BEBDDEx+x,OBBDx+x,NEBD,NEAC,BO
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年中考数学必考点对点突破的55个特色专题专题14角平分线问题(解析版)(免费下载)
链接地址:https://www.taowenge.com/p-4845863.html
限制150内