2020年中考数学备考优生百日闯关第10关 以二次函数与相似三角形问题为背景的解答题(原卷版)(免费下载).docx
《2020年中考数学备考优生百日闯关第10关 以二次函数与相似三角形问题为背景的解答题(原卷版)(免费下载).docx》由会员分享,可在线阅读,更多相关《2020年中考数学备考优生百日闯关第10关 以二次函数与相似三角形问题为背景的解答题(原卷版)(免费下载).docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十关 以二次函数与相似三角形问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。二次函数与相似三角形的存在性问题是中考考试的一个热点。解决这类问题需要用到数形结合思想,把“数”与“形”结合起来,互相渗透存在探索型问题是指在给定条件下,判断某种数学现象是否存在、某个结论是否出现的问题解决这类问题的一般思路是先假设结论的某一方面存在,然后在这个假设下进行演绎推理,若
2、推出矛盾,即可否定假设;若推出合理结论,则可肯定假设【解题思路】理解存在性问题的解题思路,根据已知角相等找出对应边成比例,存在性问题的知识覆盖面较广,综合性较强,解题方法灵活,对学生分析问题和解决问题的要求较高。一般思路是从存在的角度出发推理论证得出结论。若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出不存在的判断.函数中因动点产生的相似三角形问题一般有三个解题途径:求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形,根据未知三角形中已知边与已知三角形的可能对应边分类讨论;利用已知三角形中对应角,在未知三角形中利用勾股定理/三角函数/对
3、称/旋转等知识来推导边的大小;若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数关系式表示各边的长度,之后利用相似列方程求解.【典型例题】【例1】(2019·湖南中考真题)如图1,AOB的三个顶点A、O、B分别落在抛物线F1:的图象上,点A的横坐标为4,点B的纵坐标为2.(点A在点B的左侧)(1)求点A、B的坐标;(2)将AOB绕点O逆时针旋转90°得到A'OB',抛物线F2:经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求OA'M的面积;(3)如
4、图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.【例2】(2019·江苏中考真题)如图,二次函数图象的顶点为,对称轴是直线,一次函数的图象与轴交于点,且与直线关于的对称直线交于点(1)点的坐标是 _;(2)直线与直线交于点,是线段上一点(不与点、重合),点的纵坐标为过点作直线与线段、分别交于点,使得与相似当时,求的长;若对于每一个确定的的值,有且只有一个与相似,请直接写出的取值范围 _【方法归纳】两个定三角形是否相似:(1)已知有一个角相等的情
5、形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例?若成比例,则相似;否则不相似。(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例?若成比例,则相似;否则不相似。一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来(用字母表示),然后把两个目标三角形(题中要相似的那两个三角形)中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例(要注意是否有两种情况),列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点。(2)不知道是否有一个
6、角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标(用字母表示)后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例?若成比例,则所求动点坐标符合题意,否则这样的点不存在。简称“找特角,求(动)点标,再验证”。或称为“一找角,二求标,三验证”。【针对练习】1(2019·陕
7、西中考真题)在平面直角坐标系中,已知抛物线L:经过点A(-3,0)和点B(0,-6),L关于原点O对称的抛物线为.(1)求抛物线L的表达式;(2)点P在抛物线上,且位于第一象限,过点P作PDy轴,垂足为D.若POD与AOB相似,求符合条件的点P的坐标.2(2019·辽宁中考模拟)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的
8、代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由3(2019·湖南中考真题)如图,抛物线与x轴交于点,点,与y轴交于点C,且过点点P、Q是抛物线上的动点(1)求抛物线的解析式;(2)当点P在直线OD下方时,求面积的最大值(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标4(2019·山东初三期末)如图,以D为顶点的抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=x+3(1)
9、求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由5(2019·湖南麓山国际实验学校慈利校区初三开学考试)如图1,在平面直角坐标系中,直线与抛物线交于两点,其中,.该抛物线与轴交于点,与轴交于另一点.(1)求的值及该抛物线的解析式;(2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角和等腰直角,连接,试确定面积最大时点的坐标.(3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与相似,若存在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年中考数学备考优生百日闯关第10关以二次函数与相似三角形问题为背景的解答题(原卷版)(免费下载)
链接地址:https://www.taowenge.com/p-4845868.html
限制150内