2020年中考数学必考34个考点高分三部曲专题34 动态问题(解析版)(免费下载).docx
《2020年中考数学必考34个考点高分三部曲专题34 动态问题(解析版)(免费下载).docx》由会员分享,可在线阅读,更多相关《2020年中考数学必考34个考点高分三部曲专题34 动态问题(解析版)(免费下载).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题34 动态问题 专题知识回顾 一、动态问题概述1.就运动类型而言,有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。2.就运动对象而言,几何图形中的动点问题,有点动、线动、面动三大类。3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。另一类就是几何综合题,在梯形,矩形,三角形
2、中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只完全掌握才能拿高分。二、动点与函数图象问题常见的四种类型: 1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。三、图形运动与函数图象问题常见的三种类型: 1.
3、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。四、动点问题常见的四种类型:1.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;
4、第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。2.四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系。3.这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
5、如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?3.圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系。4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题。五、解决动态问题一般步骤:(1)用数量来刻画运动过程。因为在不同的运动阶段,同一个量的数学表达方式会发生变化,所以需要分类讨论。有时符合试题要求的情况不止一种,这时也需要分类讨论。(2)画出符合题意的示意图。(3)根据试题的已知条件或者要求列出算式、方程或者数量间的关系式。专题典型
6、题考法及解析 【例题1】(点动题)如图,在矩形 ABCD 中,AB6,BC8,点E 是 BC 中点,点 F 是边 CD 上的任意一点,当AEF 的周长最小时,则 DF 的长为( )A.1 B.2 C.3 D.4【答案】D 【解析】如图,作点E 关于直线CD 的对称点 E,连接 AE,交 CD 于点 F.在矩形 ABCD 中,AB6,BC8,点 E 是 BC 中点,BECECE4.ABBC,CDBC,CFAB,CEFBEA.CE/BE=CF/AB4/(8+4)=CF/6解得 CF2.DFCDCF624.热点二:线动 【例题2】(线动题)如图 ,量角器的直径与直角三角板 ABC 的斜边 AB 重合
7、,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿顺时针方向以每秒 3°的速度旋转,CP 与量角器的半圆弧交于点 E,第 24 秒,点 E 在量角器上对应的读数是_【答案】144°【解析】连接 OE,ACB90°,A,B,C 在以点 O 为圆心,AB 为直径的圆上点 E,A,B,C 共圆ACE3°×2472°,AOE2ACE144°.点 E 在量角器上对应的读数是 144°.【例题3】(面动题)如图 Z10-4,将一个边长为 2 的正方形 ABCD 和一个长为 2,宽为 1 的长方形
8、 CEFD 拼在一起,构成一个大的长方形 ABEF.现将小长方形 CEFD 绕点 C 按顺时针旋转至 CEFD,旋转角为.(1)当点 D恰好落在 EF 边上时,求旋转角的值;(2)如图 Z10-5,G 为 BC 中点,且 0°90°,求证:GDED;(3)小长方形 CEFD 绕点 C 按顺时针旋转一周的过程中, DCD与CBD能否全等?若能,直接写出旋转角的值;若不能,请说明理由 【答案】见解析。【解析】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角也考查了正方形、矩形的性质以及三角形全等的判定与性质(1)长方
9、形 CEFD 绕点 C 顺时针旋转至 CEFD,CDCD2.在 RtCED中,CD2,CE1,CDE30°.CDEF,30°.(2)证明:G 为 BC 中点,CG1.CGCE.长方形 CEFD 绕点 C 顺时针旋转至 CEFD,DCEDCE90°,CECECG.GCDECD90°.(3)能理由如下:四边形 ABCD 为正方形,CBCD.CDCD,BCD 与 DCD为腰相等的两个等腰三角形当BCDDCD时,BCDDCD.当BCD与DCD为钝角三角形时,当BCD与DCD为锐角三角形时,综上所述,当旋转角a的值为135°或315°时,DCD
10、与CBD全等 专题典型训练题 一.选择题1.(2019四川省达州市)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合现将EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止在这个运动过程中,正方形ABCD和EFG重叠部分的面积S与运动时间t的函数图象大致是()ABCD【答案】C【解析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决当0t2时,S,即S与t是二次函数关系,有最小值(0,0),开口向上,当2t4时,S,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意。2(20
11、19山东泰安)如图,矩形ABCD中,AB4,AD2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A2B4CD【答案】D【解析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BPP1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1P1P2,故BP的最小值为BP1的长,由勾股定理求解即可如图:当点F与点C重合时,点P在P1处,CP1DP1,当点F与点E重合时,点P在P2处,EP2DP2,P1P2CE且P1P2CE当点F在EC上除点C、E的位置处时,有DPFP由中位线定理可知:P1PCE且P1PCF点P的运动轨迹是线段P1P
12、2,当BPP1P2时,PB取得最小值矩形ABCD中,AB4,AD2,E为AB的中点,CBE、ADE、BCP1为等腰直角三角形,CP12ADECDECP1B45°,DEC90°DP2P190°DP1P245°P2P1B90°,即BP1P1P2,BP的最小值为BP1的长在等腰直角BCP1中,CP1BC2BP12PB的最小值是23(2019山东潍坊)如图,在矩形ABCD中,AB2,BC3,动点P沿折线BCD从点B开始运动到点D设运动的路程为x,ADP的面积为y,那么y与x之间的函数关系的图象大致是()ABCD【答案】D【解析】由题意当0x3时,y3,
13、当3x5时,y×3×(5x)x+由此即可判断由题意当0x3时,y3,当3x5时,y×3×(5x)x+4.(2019湖北武汉)如图,AB是O的直径,M、N是(异于A.B)上两点,C是上一动点,ACB的角平分线交O于点D,BAC的平分线交CD于点E当点C从点M运动到点N时,则C.E两点的运动路径长的比是()ABCD【答案】A【解析】本题考查弧长公式,圆周角定理,三角形的内心等知识,解题的关键是理解题意,正确寻找点的运动轨迹,属于中考选择题中的压轴题如图,连接EB设OAr易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,由题意MON2GDF,
14、设GDF,则MON2,利用弧长公式计算即可解决问题AB是直径,ACB90°,E是ACB的内心,AEB135°,ACDBCD,ADDBr,ADB90°,易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,MON2GDF,设GDF,则MON25.(2019湖南衡阳)如图,在直角三角形ABC中,C90°,ACBC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与ABC的重叠部分面积为S则S关于t的函数图象大致为()A B C
15、D 【答案】C【解析】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型根据已知条件得到ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离a时,如图1,S正方形的面积EEH的面积a2t2;当移动的距离a时,如图2,SSACH(2at)2t22at+2a2,根据函数关系式即可得到结论;在直角三角形ABC中,C90°,ACBC,ABC是等腰直角三角形,EFBC,EDAC,四边形EFCD是矩形,E是AB的中点,EFAC,DEBC,EFED,四边形EFCD是正方形,设正方形的边长为a,如图1当
16、移动的距离a时,S正方形的面积EEH的面积a2t2;当移动的距离a时,如图2,SSACH(2at)2t22at+2a2,S关于t的函数图象大致为C选项。6.(2019浙江衢州)如图所示,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿EADC移动至终点C,设P点经过的路径长为x,CPE的面积为y,则下列图象能大致反映y与x函数关系的是( ) A B C D【答案】 C 【解析】动点问题的函数图象。结合题
17、意分情况讨论:当点P在AE上时,当点P在AD上时,当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式. 当点P在AE上时, 正方形边长为4,E为AB中点,AE=2,P点经过的路径长为x,PE=x,y=SCPE= ·PE·BC= ×x×4=2x,当点P在AD上时,正方形边长为4,E为AB中点,AE=2,P点经过的路径长为x,AP=x-2,DP=6-x,y=SCPE=S正方形ABCD-SBEC-SAPE-SPDC , =4×4- ×2×4- ×2×(x-2)- ×4×(6
18、-x),=16-4-x+2-12+2x,=x+2,当点P在DC上时,正方形边长为4,E为AB中点,AE=2,P点经过的路径长为x,PD=x-6,PC=10-x,y=SCPE= ·PC·BC= ×(10-x)×4=-2x+20,综上所述:y与x的函数表达式为:y= .7.(2019甘肃武威)如图,在矩形ABCD中,ABAD,对角线AC,BD相交于点O,动点P由点A出发,沿ABBCCD向点D运动设点P的运动路程为x,AOP的面积为y,y与x的函数关系图象如图所示,则AD边的长为()A3B4C5D6【答案】B【解析】本题主要考查动点问题的函数图象,解题的关键是
19、分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值当P点在AB上运动时,AOP面积逐渐增大,当P点到达B点时,AOP面积最大为3AB3,即ABBC12当P点在BC上运动时,AOP面积逐渐减小,当P点到达C点时,AOP面积为0,此时结合图象可知P点运动路径长为7,AB+BC7则BC7AB,代入ABBC12,得AB27AB+120,解得AB4或3,因为ABAD,即ABBC,所以AB3,BC48.(2019甘肃省天水市)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年中考数学必考34个考点高分三部曲专题34动态问题(解析版)(免费下载)
限制150内