最新2017中考数学压轴试题复习第一部分专题二因动点产生的等腰三角形问题201707071107(免费下载).doc
《最新2017中考数学压轴试题复习第一部分专题二因动点产生的等腰三角形问题201707071107(免费下载).doc》由会员分享,可在线阅读,更多相关《最新2017中考数学压轴试题复习第一部分专题二因动点产生的等腰三角形问题201707071107(免费下载).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、§12 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1已知线段AB5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2已知线段AB6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外在讨论等腰三角形的存在性问题时,一般都要先分类如果ABC是等腰三角形,那么存在ABAC,BABC,CACB三种情况解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快几何法一般分三步:分类、画
2、图、计算哪些题目适合用几何法呢?如果ABC的A(的余弦值)是确定的,夹A的两边AB和AC可以用含x的式子表示出来,那么就用几何法如图1,如果ABAC,直接列方程;如图2,如果BABC,那么;如图3,如果CACB,那么代数法一般也分三步:罗列三边长,分类列方程,解方程并检验如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来图1 图2 图3 例 9 2014年长沙市中考第26题如图1,抛物线yax2bxc(a、b、c是常数,a0)的对称轴为y轴,且经过(0,0)和两点,点P在该抛物线上运动,以点P为圆心的P总经过定点A
3、(0, 2)(1)求a、b、c的值;(2)求证:在点P运动的过程中,P始终与x轴相交;(3)设P与x轴相交于M(x1, 0)、N(x2, 0)两点,当AMN为等腰三角形时,求圆心P的纵坐标图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P在抛物线上运动,可以体验到,圆与x轴总是相交的,等腰三角形AMN存在五种情况思路点拨1不算不知道,一算真奇妙,原来P在x轴上截得的弦长MN4是定值2等腰三角形AMN存在五种情况,点P的纵坐标有三个值,根据对称性,MAMN和NANM时,点P的纵坐标是相等的图文解析(1)已知抛物线的顶点为(0,0),所以yax2所以b0,c0将代入yax2,得解得(舍去
4、了负值)(2)抛物线的解析式为,设点P的坐标为已知A(0, 2),所以而圆心P到x轴的距离为,所以半径PA圆心P到x轴的距离所以在点P运动的过程中,P始终与x轴相交(3)如图2,设MN的中点为H,那么PH垂直平分MN在RtPMH中,所以MH24所以MH2因此MN4,为定值等腰AMN存在三种情况:如图3,当AMAN时,点P为原点O重合,此时点P的纵坐标为0图2 图3如图4,当MAMN时,在RtAOM中,OA2,AM4,所以OM2此时xOH2所以点P的纵坐标为如图5,当NANM时,根据对称性,点P的纵坐标为也为图4 图5如图6,当NANM4时,在RtAON中,OA2,AN4,所以ON2此时xOH2
5、所以点P的纵坐标为如图7,当MNMA4时,根据对称性,点P的纵坐标也为图6 图7考点伸展如果点P在抛物线上运动,以点P为圆心的P总经过定点B(0, 1),那么在点P运动的过程中,P始终与直线y1相切这是因为:设点P的坐标为已知B(0, 1),所以而圆心P到直线y1的距离也为,所以半径PB圆心P到直线y1的距离所以在点P运动的过程中,P始终与直线y1相切例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O为坐标原点,抛物线yax2bxc(a0)过O、B、C三点,B、C坐标分别为(10, 0)和,以OB为直径的A经过C点,直线l垂直x轴于B点(1)求直线BC的解析式;(2)
6、求抛物线解析式及顶点坐标;(3)点M是A上一动点(不同于O、B),过点M作A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;(4)若点P从O出发,以每秒1个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0t8)秒时恰好使BPQ为等腰三角形,请求出满足条件的t值 图 图1 动感体验请打开几何画板文件名“14张家界25”,拖动点M在圆上运动,可以体验到,EAF保持直角三角形的形状,AM是斜边上的高拖动点Q在BC上运动,可以体验到,BPQ有三个时刻可以成为等腰三角形 思路点拨1从直线BC的解析式可以得到OBC的三
7、角比,为讨论等腰三角形BPQ作铺垫2设交点式求抛物线的解析式比较简便3第(3)题连结AE、AF容易看到AM是直角三角形EAF斜边上的高 4第(4)题的PBQ中,B是确定的,夹B的两条边可以用含t的式子表示分三种情况讨论等腰三角形图文解析(1)直线BC的解析式为(2)因为抛物线与x轴交于O、B(10, 0)两点,设yax(x10)代入点C,得解得所以抛物线的顶点为(3)如图2,因为EF切A于M,所以AMEF由AEAE,AOAM,可得RtAOERtAME所以12同理34于是可得EAF90°所以51由tan5tan1,得所以ME·MFMA2,即mn25 图2(4)在BPQ中,co
8、sB,BP10t,BQt分三种情况讨论等腰三角形BPQ:如图3,当BPBQ时,10tt解得t5如图4,当PBPQ时,解方程,得如图5,当QBQP时,解方程,得图3 图4 图5考点伸展在第(3)题条件下,以EF为直径的G与x轴相切于点A如图6,这是因为AG既是直角三角形EAF斜边上的中线,也是直角梯形EOBF的中位线,因此圆心G到x轴的距离等于圆的半径,所以G与x轴相切于点A图6例 11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线yx2(mn)xmn(mn)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C(1)若m2,n1,求A、B两点的坐标;(2)若A、B两点分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 2017 中考 数学 压轴 试题 复习 第一 部分 专题 产生 等腰三角形 问题 201707071107 免费 下载
链接地址:https://www.taowenge.com/p-4846140.html
限制150内