大学一年级医用高数期末考试题及答案(共7页).doc
《大学一年级医用高数期末考试题及答案(共7页).doc》由会员分享,可在线阅读,更多相关《大学一年级医用高数期末考试题及答案(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一学期高等数学期末考试试卷答案一计算题(本题满分35分,共有5道小题,每道小题7分), 1求极限 解: 2设时,与是等价无穷小,与等价无穷小,求常数与 解: 由于当时,与等价无穷小,所以而 所以,因此, 3如果不定积分中不含有对数函数,求常数与应满足的条件 解: 将化为部分分式,有 ,因此不定积分中不含有对数函数的充分必要条件是上式中的待定系数即所以,有比较上式两端的系数,有所以,得 5计算定积分 解: 所以, 5设曲线的极坐标方程为,求曲线的全长 解: 曲线一周的定义域为,即因此曲线的全长为 二(本题满分45分,共有5道小题,每道小题9分), 6求出函数的所有间断
2、点,并指出这些间断点的类型 解: 因此与是函数的间断点 ,因此是函数的第一类可去型间断点 ,因此是函数的第一类可去型间断点 7设是函数在区间上使用Lagrange(拉格朗日)中值定理中的“中值”,求极限 解: 在区间上应用Lagrange中值定理,知存在,使得所以,因此, 令,则有 所以, 8设,求 解: 在方程中,令,得 再在方程两端对求导,得,因此, 9研究方程在区间内实根的个数 解: 设函数, 令,得函数的驻点由于,所以 , 因此,得函数的性态 若,即时,函数在、内各有一个零点,即方程在内有3个实根 若,即时,函数在、内各有一个零点,即方程在内有2个实根 若,即时,函数在有一个零点,即方
3、程在内有1个实根 10设函数可导,且满足,试求函数的极值 解: 在方程中令,得,即在方程组中消去,得积分,注意,得即 由得函数的驻点而所以, ,所以,是函数极小值;是函数极大值三应用题与证明题(本题满分20分,共有2道小题,每道小题10分), 11求曲线的一条切线,使得该曲线与切线及直线和所围成的图形绕轴旋转的旋转体的体积为最小 解: 设切点坐标为,由,可知曲线在处的切线方程为,或因此所求旋转体的体积为 所以,得驻点,舍去由于 ,因而函数在处达到极小值,而且也是最小值因此所求切线方程为 12设函数在闭区间上连续,在开区间内可导,且,证明:至少存在一点,使得 解: 因为在闭区间上连续,所以由积分中值定理,知存在,使得由于,所以,再由,得作函数,则函数在区间上连续,在区间内可导所以由Rolle中值定理,存在,使得而 所以存在,使得 由于,所以,即专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 一年级 医用 期末 考试题 答案
限制150内