中考数学轨迹问题汇总(共9页).doc
《中考数学轨迹问题汇总(共9页).doc》由会员分享,可在线阅读,更多相关《中考数学轨迹问题汇总(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中考数学轨迹问题1、如图1,已知线段AB6,C、D是AB上两点,且ACDB1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_ 2、正ABC的边长为3cm,边长为1cm的正RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将RPQ沿着边AB,BC,CA逆时针连续翻转(如图所示),直至点P第一次回到原来位置,则点P运动的路径长为_ cm(结果保留)3、如图,AB为O的直径,AB=8,点C为圆上任意一点,ODAC于D,当点C在O上运动一周,点D运动的路径长为_4、如图,一块边长
2、为6cm的等边三角形木板ABC,在水平桌面上绕C点按顺时针方向旋转到ABC的位置,则边AB的中点D运动的路径长是_5、如图所示,扇形OAB从图无滑动旋转到图,再由图到图,O=60,OA=1(1)求O点所运动的路径长;(2)O点走过路径与直线L围成图形的面积6、如图,OAOB,垂足为O,P、Q分别是射线OA、OB上两个动点,点C是线段PQ的中点,且PQ=4则动点C运动形成的路径长是_ 7、如图,半径为2cm,圆心角为90的扇形OAB的弧AB上有一运动的点P从点P向半径OA引垂线PH交OA于点H设OPH的内心为I,当点P在弧AB上从点A运动到点B时,内心I所经过的路径长为_ 8如图,已知线段AB=
3、10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,设正方形对角线的交点分别为O1、O2,当点P从点C运动到点D时,线段O1O2中点G的运动路径的长是 19606 9、如图,已知点A是第一象限内横坐标为2的一个定点,ACx轴于点M,交直线y=x于点N若点P是线段ON上的一个动点,APB=30,BAPA,则点P在线段ON上运动时,A点不变,B点随之运动求当点P从点O运动到点N时,点B运动的路径长是10.如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G
4、,连结EG、FG(1)设AEx时,EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;(2)P是MG的中点,请直接写出点P运动路线的长FDCABMPGEFDCABMPGE11.如图,直线y=x+4与两坐标轴交A、B两点,点P为线段OA上的动点,连接BP,过点A作AM垂直于直线BP,垂足为M,当点P从点O运动到点A时,则点M运动路径的长为12如图,抛物线y=x2x与直线y=x2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B若使点P运动的总路径最短,则点P运动的总路径的长为()ABCD13如图,半径为4的O
5、中,CD为直径,弦ABCD且过半径OD的中点,点E为O上一动点,CFAE于点F当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()ABCD14、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在APK、ADK、DFK中,是否存在两个面积始终相等的三角形?请说明理由问题拓展:(3)如图2,以AB为边作正方形ABCD,
6、动点P、Q在正方形ABCD的边上运动,且PQ=8若点P从点A出发,沿ABCD的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值15、如图1,在RtABC中,C=90,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PDBC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点
7、到达端点时,另一点也随之停止运动,设运动时间为t秒(t0)(1)直接用含t的代数式分别表示:QB=_ ,PD=_ (2) 是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长16、在直角坐标系中,O是坐标原点,点A坐标为(0,-1),点C是x轴上一个动点。(1)如图1,AOB和BCD都是等边三角形,当点C在x轴上运动时,请探究点D的运动轨迹;(2)如图2,ABO和ACD都是等腰直角三角形,当点C在x轴上运动时,请探究点D的
8、运动轨迹;(3)如图3,四边形OABE是正方形,请你画出正方形BCDF(BCDF按照逆时针顺序),并探究当点C在x轴上运动时,点D的运动轨迹。17、如图,在直角坐标系中,A点坐标为(0,6),B点坐标为(8,0),点P沿射线BO以每秒2个单位的速度匀速运动,同时点Q从A到O以每秒1个单位的速度匀速运动,当点Q运动到点O时两点同时停止运动(1) 设P点运动时间为t秒,M为PQ的中点,请用t表示出M点的坐标为_(2)设BPM的面积为S,当t为何值时,S有最大值,最大值为多少?(3)请画出M点的运动路径,并说明理由;(4)若以A为圆心,AQ为半径画圆,t为何值时A与点M的运动路径只有一个交点?18、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 轨迹 问题 汇总
限制150内