专题19 统计的应用-2018年中考数学考点总动员系列(解析版)(免费学习).doc
《专题19 统计的应用-2018年中考数学考点总动员系列(解析版)(免费学习).doc》由会员分享,可在线阅读,更多相关《专题19 统计的应用-2018年中考数学考点总动员系列(解析版)(免费学习).doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2018年中考数学备考之黄金考点聚焦考点十九:统计的应用聚焦考点温习理解1统计图是表示统计数据的图形,是数据及其之间关系的直观表现常见的统计图有:(1)条形统计图:条形统计图就是用长方形的高来表示数据的图形;(2)折线统计图:用几条线段连成的折线来表示数据的图形;(3)扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比大小,这样的统计图叫扇形统计图;(4)频数分布直方图、频数折线图:能显示各组频数分布的情况,显示各组之间频数的差别2频数分布直方图(1)把每个对象出现的次数叫做频数(2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频
2、数和频率都能够反映每个对象出现的频繁程度(3)频数分布表、频数分布直方图都能直观、清楚地反映数据在各个小范围内的分布情况 (4)频数分布直方图的绘制步骤是:学+科网计算最大值与最小值的差(即:极差);决定组距与组数,一般将组数分为512组;确定分点,常使分点比数据多一位小数,且把第一组的起点稍微减小一点;列频数分布表;用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图名师点睛典例分类考点典例一、条形统计图与折线统计图【例1】(2017浙江嘉兴第21题)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计当地去年每月的平均气温如图1,
3、小明家去年月用电量如图2根据统计表,回答问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由【答案】(1) 月平均气温最高值为30.6,最低气温为5.8;相应月份的用电量分别为124千瓦时和110千瓦时(2) 当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;(3) 能,因为中位数刻画了中间水平【解析】考点:1.条形统计图;2.用样本估计总体;3.折线统计图;4.中位数【点睛】本题考查的是条形统计图和折线统计
4、图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况【举一反三】1. 已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图由图得出如下四个结论:学校数量2007年2012年比20012006年更稳定;在校学生人数有两次连续下降,两次连续增长的变化过程;2009年的大于1000;学+科网20092012年,相邻两年的学校数量增长和在校学生人数增长最快的都是20112012年其中,正确的结论是()ABCD【答案】B试题解析:根据条形统计图可知,学校数量20012006
5、年下降幅度较大,最多1354所,最少605所,而2007年2012年学校数量都是在400所以上,440所以下,故结论正确;由折线统计图可知,在校学生人数有2001年2003年、2006年2009年两次连续下降,2004年2006年、2009年2012年两次连续增长的变化过程,故结论正确;由统计图可知,2009年的在校学生445192人,学校数量417所,所以2009年的1000,故结论正确;20092010年学校数量增长率为-2.16%,20102011年学校数量增长率为0.245%,20112012年学校数量增长率为1.47%,1.47%0.245%-2.16%,20092012年,相邻两年
6、的学校数量增长最快的是20112012年;20092010年在校学生人数增长率为1.96%,20102011年在校学生人数增长率为2.510%,20112012年在校学生人数增长率为1.574%,2.510%1.96%1.574%,20092012年,相邻两年的在校学生人数增长最快的是20102011年,故结论错误综上所述,正确的结论是:故选:B考点:折线统计图;条形统计图考点典例二、扇形统计图【例2】(2017江苏徐州第21题)某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取部分学生做了一次问卷调查,要求学生选出自己喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如
7、下:各版面选择人数的扇形统计图 各版面选择人数的条形统计图 请根据图中信息,解答下列问题:(1)该调查的样本容量为 , ,“第一版”对应扇形的圆心角为 ; (2)请你补全条形统计图;(3)若该校有名学生,请你估计全校学生中最喜欢“第一版”的人数.【答案】(1)50,36,108(2)补图见解析;(3)240人【解析】试题分析:(1)设样本容量为x由题意=10%,求出x即可解决问题;(2)求出第三版”的人数为50-15-5-18=12,画出条形图即可;(3)用样本估计总体的思想解决问题即可试题解析:(1)设样本容量为x由题意=10%,解得x=50,a=×100%=36%,第一版”对应扇
8、形的圆心角为360°×=108°(2)“第三版”的人数为50-15-5-18=12,(2)条形图如图所示,(3)该校有1000名学生,估计全校学生中最喜欢“第三版”的人数约为1000××100%=240人考点:1.条形统计图;2.总体、个体、样本、样本容量;.用样本估计总体;4.扇形统计图【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小 【举一反三】(2017江苏盐城第21题)“大美湿地,水韵盐城”某校
9、数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数【答案】(1)40人;(2)补图见解析;72°;(3)280人【解析】来源:学科网ZXXK试题分析:(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图
10、,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可试题解析:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人考点:条形统计图;用样本估计总体;扇形统计图考点典例三、频数分布直方图【例3】(2017广西贵
11、港第22题)在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表 阅读时间(小时)频数(人)频率 来源:Z&xx&k.Com合计 频数分布直方图(1)填空: , , , ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【答案】(1)30,150,0.2,0.24;(2)作图见解析;(3)960人【解析】试题分析:(1)根据阅读
12、时间为1x2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可试题解析:(1)b=18÷0.12=150(人),n=36÷150=0.24,m=10.120.30.240.14=0.2,a=0.2×150=30; (2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表【点睛】本题考查读频数
13、分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题【举一反三】(2017甘肃庆阳第24题)中华文明,源远流长;中华汉字,寓意深广为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:来源:学科网根据所给信息,解答下列问题:(1)m= ,n= ;学科+网(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加
14、本次比赛的3000名学生中成绩是“优”等的约有多少人?【答案】(1)70,0.2;(2)补图见解析;(3)80x90;(4)750人.【解析】试题分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750
15、(人)考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数考点典例四、利用统计量解决实际问题【例4】(2017浙江宁波第21题)大黄鱼是中国特有的地方性鱼类,有“国鱼”之称,由于过去滥捕等多种因素,大黄鱼资源已基本枯竭,目前,我市已培育出十余种大黄鱼品种,某鱼苗人工养殖基地对其中的四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高的品种进行推广,通过实验得知“甬岱”品种鱼苗成活率为,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1) 求实验中“宁港”品种鱼苗的数量;(2) 求实验中“甬岱”品种鱼苗的成活数,并补全条形统计图;(
16、3)你认为应选哪一品种进行推广?请说明理由.【答案】(1)60尾.(2)72尾;补图见解析;(3)选“宁港”品种进行推广.【解析】补全条形统计图如图所示:(3) “宁港”品种鱼苗的成活率为×100%=85%;“御龙”品种鱼苗的成活率为×100%=74.6%;“象山港”品种鱼苗的成活率为×100%=80%;答:“宁港”品种鱼苗的成活率最高,应选“宁港”品种进行推广.考点:1.条形统计图;2.扇形统计图.【点睛】此题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识,理论联系实际进而结合抽样调查的随机性进而得出是解题关键【举一反三】(2017山东德州第19
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题19统计的应用-2018年中考数学考点总动员系列(解析版)(免费学习)
限制150内