专题07 二元一次方程(组)-2年中考1年模拟备战2018年中考数学精品系列(解析版)(免费学习).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《专题07 二元一次方程(组)-2年中考1年模拟备战2018年中考数学精品系列(解析版)(免费学习).doc》由会员分享,可在线阅读,更多相关《专题07 二元一次方程(组)-2年中考1年模拟备战2018年中考数学精品系列(解析版)(免费学习).doc(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、备战2018中考系列:数学2年中考1年模拟 第二篇方程与不等式 专题07 二元一次方程(组)解读考点知识点名师点晴二元一次方程 的有关概念来源:学科网ZXXK1 二元一次方程的概念会识别二元一次方程来源:Zxxk.Com来源:学科网来源:学科网ZXXK2 二元一次方程的解会识别一组数是不是二元一次方程的解3二元一次方程组理解二元一次方程组的概念并会判断二元一次方程的解法带入消元加减消元会选择适当的方法解二元一次方程组二元一次方程的应用由实际问题抽象出一元一次方程要列方程,首先要根据题意找出存在的等量关系最后要检验结果是不是合理2年中考【2017年题组】一、选择题1(2017衢州)二元一次方程组
2、的解是()A B C D 【答案】B【解析】试题分析:得到y=2,把y=2代入得到x=4,故选B考点:解二元一次方程组2(2017浙江省嘉兴市)若二元一次方程组的解为,则ab=()A1B3C D【答案】D【解析】考点:1二元一次方程组的解;2整体思想3(2017浙江省台州市)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A10分钟B13分钟C15分钟D19分钟【答案】D【解析】试题分析:设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.
3、3x=1.8×8.5+0.3y+0.8×(8.57),108+0.3x=16.5+0.3y,03(xy)=5.7,xy=19故这两辆滴滴快车的行车时间相差19分钟故选D学科网考点:二元一次方程的应用4(2017黑龙江省龙东地区)“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A4种B5种C6种D7种【答案】A【解析】点睛:本题考查了二元一次方程的应用对于此类问题,挖掘题目中的关系,找出等量关系,列出二元一次方程然后根据未知数的实际意义求其整数解考点:1二元一次方程的应用;2方案型5(2017
4、山东省济南市)九章算术是中国传统数学的重要著作,方程术是它的最高成就其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()ABCD【答案】C【解析】试题分析:设合伙人数为x人,物价为y钱,根据题意,可列方程组:,故选C考点:由实际问题抽象出二元一次方程组二、填空题6(2017内蒙古包头市)若关于x、y的二元一次方程组的解是,则的值为 【答案】1【解析】试题分析:关于x、y的二元一次方程组的解是,解得a=1,b=2,=(1)2=1故
5、答案为:1考点:二元一次方程组的解7(2017北京市)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为 【答案】【解析】考点:由实际问题抽象出二元一次方程组8(2017四川省乐山市)二元一次方程组的解是 【答案】【解析】试题分析:原方程可化为:,化简为:,解得:故答案为:;考点:解二元一次方程组学科!网9(2017四川省宜宾市)若关于x、y的二元一次方程组的解满足x+y0,则m的取值范围是 【答案】m2【解析】考点:1解一元一次不等式;2二元一次方程组的解;3整体思想10
6、(2017四川省自贡市)我国明代数学家程大位的名著直接算法统宗里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组 【答案】【解析】试题分析:设大、小和尚各有x,y人,则可以列方程组:故答案为:考点:二元一次方程组的应用三、解答题12(2017江苏省徐州市)4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识
7、帮记者求出哥哥和妹妹的年龄【答案】今年妹妹6岁,哥哥10岁【解析】答:今年妹妹6岁,哥哥10岁考点:二元一次方程组的应用13(2017内蒙古呼和浩特市)某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?【答案】打了八折【解析】试题分析:设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据题意得:,解得:,500×16+450×4=9800(元), =0.8答:打了八折考点:二元一次方程
8、组的应用学科#网14(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【答案】(1)购进篮球40个,排球20个;(2)
9、y=5x+1200;(3)共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个最大利润为1415元【解析】(2)设商店所获利润为y元,购进篮球x个,则购进排球(60x)个,根据题意得:y=(10580)x+(7050)(60x)=5x+1200,y与x之间的函数关系式为:y=5x+1200(3)设购进篮球x个,则购进排球(60x)个,根据题意得:,解得:40xx取整数,x=40,41,42,43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购
10、进篮球42个,排球18个;方案4:购进篮球43个,排球17个在y=5x+1200中,k=50,y随x的增大而增大,当x=43时,可获得最大利润,最大利润为5×43+1200=1415元点睛:本题考查了二元一次方程组的应用、一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出y与x之间的函数关系式;(3)根据一次函数的性质解决最值问题考点:1一次函数的应用;2二元一次方程组的应用;3一元一次不等式组的应用;4方案型;5最值问题15(2017四川省南充市)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45
11、人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【答案】(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)2960【解析】答:1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元)答:最节省的租车费用是2960元考点
12、:1一元一次不等式的应用;2二元一次方程组的应用;3最值问题16(2017宁夏)某商店分两次购进 AB两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润【答案】(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元学科网【解析】试题分析:(1
13、)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:答:A种商品每件的进价为20元,B种商品每件的进价为80元(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000m)件,根据题意得:w=(3020)(1000m)+(10080)m=10m+10000A种商品的数量不少于B种商品数量的4倍,1000m4m,解得:m200在w=10m+10000中,k=100,w的值随m的增大而增大,当m=200时,w取最大值,最大值为10×200+10000=12000,当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元点睛:本题考
14、查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式考点:1一次函数的应用;2二元一次方程组的应用;3最值问题17(2017山东省东营市)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同
15、承担若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元请问共有哪几种改扩建方案?【答案】(1)改扩建一所A类学校所需资金为1200万元,一所B类学校所需资金为1800万元;(2)共有3种方案,具体见解析【解析】答:改扩建一所A类学校所需资金为1200万元,一所B类学校所需资金为1800万元(2)设今年改扩建A类学校a所,则改扩建B类学校(10a)所,由题意得:,解得:,3a5,x取整数,x=3,4,5即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校
16、6所;方案三:改扩建A类学校5所,B类学校5所点睛:本题考查了一元一次不等式组的应用,二元一次方程组的应用解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系考点:1一元一次不等式组的应用;2二元一次方程组的应用;3方案型18(2017河南省)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个)某商店有两种优惠活动,如图所示请根据以上信息,说明选择哪种优惠活动购买魔方更实惠【答案】(1)A
17、种魔方的单价为20元/个,B种魔方的单价为15元/个;(2)当0m45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m45时,选择活动二购买魔方更实惠【解析】答:A种魔方的单价为20元/个,B种魔方的单价为15元/个(2)设购进A种魔方m个(0m50),总价格为w元,则购进B种魔方(100m)个,根据题意得:w活动一=20m×0.8+15(100m)×0.4=10m+600;w活动二=20m+15(100mm)=10m+1500当w活动一w活动二时,有10m+60010m+1500,解得:m45;当w活动一=w活动二时,有10m+600=10m+150
18、0,解得:m=45;当w活动一w活动二时,有10m+60010m+1500,解得:45m50综上所述:当0m45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m45时,选择活动二购买魔方更实惠点睛:本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式考点:1二元一次方程组的应用;2方案型19(2017湖北省恩施州)为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车经市场调查得知,购买3辆男式单
19、车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【答案】(1)男式单车2000元/辆,女式单车1500元/辆;(2)该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元【解析】(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9m12,m为整数,m的值可以是9、10、11、12,即该社区有四种购置
20、方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,W随m的增大而增大,当m=9时,W取得最小值,最小值为39500答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元考点:1一元一次不等式组的应用;2二元一次方程组的应用;3最值问题;4方案型20(2017湖北省武汉市)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2
21、倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【答案】(1)甲种奖品购买了5件,乙种奖品购买了15件;(2)该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件【解析】(2)设甲种奖品购买了x件,乙种奖品购买了(20x)件,根据题意得:,解得:x8,x为整数,x=7或x=8,当x=7时,20x=13;当x=8时,20x=12答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件考点:1一元一次不等式组的应用;2二元一次方程组的应用;3应用题;4方案型21(201
22、7贵州省遵义市)为厉行节能减排,倡导绿色出行,今年3月以来“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题07二元一次方程(组)-2年中考1年模拟备战2018年中考数学精品系列(解析版)(免费学习)
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-4847405.html
限制150内