专题36三角形(1)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版)(,).doc





《专题36三角形(1)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版)(,).doc》由会员分享,可在线阅读,更多相关《专题36三角形(1)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版)(,).doc(116页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题36三角形(1)(全国一年)学校:_姓名:_班级:_考号:_一、单选题1(2020·广西河池?中考真题)如图,AB是O的直径,CD是弦,AECD于点E,BFCD于点F若FBFE2,FC1,则AC的长是()ABCD【答案】B【解析】【分析】连接BC,因为AB是直径,根据圆周角定理得到ACB90°,可证ACECBF,根据相似三角形的判定和性质定理可得,并用勾股定理求出BC的长度,代入公式,求出AC的长度,即可得到结论【详解】解:如图所示,连接BC,AB是O的直径,ACB90°,ACE+BCF90°,BFCD,CFB90°,CBF+BCF90
2、176;,ACECBF,AECD,AECCFB90°,ACECBF,FBFE2,FC1,CECF+EF3,BC,故选:B【点睛】本题主要考察了圆周角定理的应用、相似三角形的性质、勾股定理,解题的关键在于找出一对相似的三角形,其线段互相成比例,并求出各线段的长度2(2020·广西河池?中考真题)观察下列作图痕迹,所作CD为ABC的边AB上的中线是()ABCD【答案】B【解析】【分析】根据题意,CD为ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,点D即为线段AB的中点,连接CD即可判断【详解】解:作AB边的垂直平分线,交AB于点D,连接CD,点D即为线段AB的
3、中点,CD为ABC的边AB上的中线故选:B【点睛】本题主要考查三角形一边的中线的作法;作该边的中垂线,找出该边的中点是解题关键3(2020·山东枣庄?中考真题)如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,将绕点逆时针旋转,点的对应点的坐标是( )ABCD【答案】B【解析】【分析】如图,作轴于解直角三角形求出,即可【详解】如图,作轴于 由题意:,故选B【点睛】本题考查坐标与图形变化旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题4(2020·贵州铜仁?中考真题)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x
4、的一元二次方程6+k+2=0的两个根,则k的值等于()A7B7或6C6或7D6【答案】B【解析】【分析】当m=4或n=4时,即x=4,代入方程即可得到结论,当m=n时,即=(6)24×(k+2)=0,解方程即可得到结论【详解】当m=4或n=4时,即x=4,方程为426×4+k+2=0,解得:k=6;当m=n时,6+k+2=0,解得:,综上所述,k的值等于6或7,故选:B【点睛】本题主要考查了一元二次方程的根、根的判别式以及等腰三角形的性质,由等腰三角形的性质得出方程有一个实数根为2或方程有两个相等的实数根是解题的关键5(2020·辽宁大连?中考真题)如图,中,将绕
5、点B逆时针旋转得到,使点C的对应点恰好落在边上,则的度数是( )ABCD【答案】D【解析】【分析】由余角的性质,求出CAB=50°,由旋转的性质,得到,然后求出,即可得到答案【详解】解:在中,CAB=50°,由旋转的性质,则,;故选:D【点睛】本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所学的性质,正确求出6(2020·辽宁大连?中考真题)如图,中,则的度数是( )ABCD【答案】D【解析】【分析】由三角形的内角和定理求出C的度数,然后由平行线的性质,即可得到答案【详解】解:在中,;故选:D【点睛】本题考查了三角形的内角和定理,以及平
6、行线的性质,解题的关键是掌握所学的性质,正确求出角的度数7(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,点在x轴正半轴上,点在直线上,若,且均为等边三角形,则线段的长度为( )ABCD【答案】D【解析】【分析】根据题意得出AnOBn=30°,从而推出AnBn=OAn,得到BnBn+1=BnAn+1,算出B1A2=1,B2A3=2,B3A4=4,找出规律得到BnAn+1=2n-1,从而计算结果【详解】解:设BnAnAn+1的边长为an,点B1,B2,B3,是直线上的第一象限内的点,过点A1作x轴的垂线,交直线于C,A1(1,0),令x=1,则y=,A1C=,AnO
7、Bn=30°,均为等边三角形,BnAnAn+1=60°,OBnAn=30°,AnBn=OAn,BnAn+1Bn+1=60°,An+1BnBn+1=90°,BnBn+1=BnAn+1,点A1的坐标为(1,0),A1B1=A1A2=B1A2=1,A2B2=OA2=B2A3=2,A3B3=OA3=B3A4=4,.,AnBn=OAn=BnAn+1=2n-1,=B2019A2020=,故选D【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,本题属于基础题,难度不大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键8(2
8、020·内蒙古通辽?中考真题)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()ABCD【答案】C【解析】【分析】根据三角形外心的定义得到三角形外心为三边的垂直平分线的交点,然后利用基本作图对各选项进行判断【详解】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心故选C【点睛】本题考查了作图基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了三角形的外心9(2020·辽宁朝阳?中考真题)如图,在正方形中,对角线相交于点
9、O,点E在BC边上,且,连接AE交BD于点G,过点B作于点F,连接OF并延长,交BC于点M,过点O作交DC于占N,现给出下列结论:;其中正确的结论有( )ABCD【答案】D【解析】【分析】直接根据平行线分线段成比例即可判断正误;过点O作交AE于点H,过点O作交BC于点Q,过点B作交OM的延长线于点K,首先根据四边形MONC的面积求出正方形的边长,利用勾股定理求出AE,AF,EF的长度,再利用平行线分线段成比例分别求出OM,BK的长度,然后利用即可判断;利用平行线分线段成比例得出,然后利用勾股定理求出OM的长度,进而OF的长度可求;直接利用平行线的性质证明,即可得出结论【详解】如图,过点O作交A
10、E于点H,过点O作交BC于点Q,过点B作交OM的延长线于点K,四边形ABCD是正方形, , , , , , , , , , , , , , , , ,故正确; , , ,故正确;, , ,故正确; ,即, ,故错误;正确的有,故选:D【点睛】本题主要考查四边形综合,掌握正方形的性质,全等三角形的判定及性质,平行线分线段成比例和锐角三角函数是解题的关键10(2020·辽宁朝阳?中考真题)如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为( )ABC42D【答案】D【解析】【分析】过点C作CEx轴于E,
11、证明AOBBEC,可得点C坐标,代入求解即可;【详解】解:当x=0时,A(0,4), OA=4;当y=0时,x=-3,B(-3,0), OB=3;过点C作CEx轴于E, 四边形ABCD是正方形,ABC=90°,AB=BC,CBE+ABO=90°,BAO+ABO=90°,CBE =BAO在AOB和BEC中,AOBBEC,BE=AO=4,CE=OB=3,OE=3+4=7,C点坐标为(-7,3),点A在反比例函数的图象上,k=-7×3=-21故选D【点睛】本题考查了一次函数与坐标轴的交点、待定系数法求函数解析式、正方形的性质,以及全等三角形的判定与性质,解答此
12、题的关键是正确作出辅助线及数形结合思想的运用11(2020·辽宁铁岭?中考真题)一个零件的形状如图所示,则的度数是( )A70°B80°C90°D100°【答案】B【解析】【分析】延长DE与BC交于点F,则四边形ABFD是平行四边形,则A=F,利用三角形内角和定理,即可求出答案【详解】解:延长DE与BC交于点F,如图:,四边形ABFD是平行四边形,A=F,在BDF中,A=80°;故选:B【点睛】本题考查了平行四边形的性质,三角形的内角和定理,解题的关键是正确作出辅助线,求出F的度数12(2020·辽宁铁岭?中考真题)如图,矩
13、形的顶点在反比例函数的图象上,点和点在边上,连接轴,则的值为( )AB3C4D【答案】C【解析】【分析】依次可证明OFE和AFD为等腰直角三角形,再依据勾股定理求得DF的长度,即可得出D点坐标,从而求得k的值【详解】解:,x轴y轴,OE=OF=1,FOE=90°,OEF=OFE=45°,四边形ABCD为矩形,A=90°,轴,DFE=OEF=45°,ADF=45°,D(4,1),解得,故选:C【点睛】本题考查等腰直角三角形的性质,求反比例函数解析式,勾股定理,矩形的性质能依据已知点的坐标,得出OFE是等腰直角三角形是解题关键13(2020
14、3;浙江绍兴?中考真题)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A4B5C6D7【答案】B【解析】【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】长度分别为5、3、4,能构成三角形,且最长边为5;长度分别为2、6、4,不能构成三角形;长度分别为2、7、3,不能构成三角形;长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5故选:B.【点睛】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.14(2020
15、83;辽宁丹东?中考真题)如图,在四边形中,分别以和为圆心,以大于的长为半径作弧,两弧相交于点和,直线与延长线交于点,连接,则的内切圆半径是( )A4BC2D【答案】A【解析】【分析】分别以和为圆心,以大于的长为半径作弧,两弧相交于点和,连接P,Q则PQ为BC的垂直平分线,可得EB=EC,又B=60°,所以EBC为等边三角形,作等边三角形EBC的内切圆,设圆心为M,则M在直线PQ上,连接BM,过M作BC垂线垂足为H,在RtBMH中,BH=BC=AD=,MBH=B=30°,通过解直角三角形可得出MH的值即为BCE的内切圆半径的长【详解】解:有题意得PQ为BC的垂直平分线,EB
16、=EC,B=60°,EBC为等边三角形,作等边三角形EBC的内切圆,设圆心为M,M在直线PQ上,连接BM,过M作MH垂直BC于H,垂足为H,BH=BC=AD= ,MBH=B=30°,在RtBMH中,MH=BH×tan30°=×=4的内切圆半径是4故选:A【点睛】本题考查了线段垂直平分线定理,等边三角形的判定,等边三角形内切圆半径的求法,解直角三角形,解题关键在于理解题意,运用正确的方法求三角形内切圆半径15(2020·黑龙江鹤岗?中考真题)如图,正方形的边长为,点在边上运动(不与点,重合),点在射线上,且,与相交于点,连接、则下列结论
17、:;的周长为;的面积的最大值是;当时,是线段的中点其中正确的结论是( )ABCD【答案】D【解析】【分析】如图1中,在BC上截取BH=BE,连接EH证明FAEEHC(SAS),即可判断正确;如图2中,延长AD到H,使得DH=BE,则CBECDH(SAS),再证明GCEGCH(SAS),即可判断错误;设BE=x,则AE=a-x,AF=,构建二次函数,利用二次函数的性质解决最值问题即可判断正确;设AG=,利用前面所证EG=GH,在RtAEG中,利用勾股定理求得,即可判断正确【详解】如图1中,在BC上截取BH=BE,连接EHBE=BH,EBH=90°,EH=BE,AF=BE,AF=EH,D
18、AM=EHB=45°,BAD=90°,FAE=EHC=135°,BA=BC,BE=BH,AE=HC,FAEEHC(SAS),EF=EC,AEF=ECH,ECH+CEB=90°,AEF+CEB=90°,FEC=90°,ECF=EFC=45°,故正确,如图2中,延长AD到H,使得DH=BE,则CBECDH(SAS),ECB=DCH,ECH=BCD=90°,ECG=GCH=45°,CG=CG,CE=CH,GCEGCH(SAS),EG=GH,GH=DG+DH,DH=BE,EG=BE+DG,故错误,AEG的周长=A
19、E+EG+AG=AE+AH= AE +AD+DH =AE +AD+EB =AB+AD=2a,故错误,设BE=,则AE=,AF=,SAEF=,当时,AEF的面积的最大值为,故正确;如图3,延长AD到H,使得DH=BE,同理:EG=GH,则,设AG=,则DG=,EG=GH =,在RtAEG中,即,解得:,当时,是线段的中点,故正确;综上,正确,故选:D【点睛】本题考查了正方形的性质,全等三角形的判定和性质,二次函数最值的应用,勾股定理的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题16(2020·重庆中考真题)如图,在ABC中,AC=,ABC
20、=45°,BAC=15°,将ACB沿直线AC翻折至ABC所在的平面内,得ACD过点A作AE,使DAE=DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()AB3CD4【答案】C【解析】【分析】根据三角形内角和定理、翻折及等腰三角形判定,依次易得ACB=120°,ACE=120°,CAE=30°,AC=EC,再进一步证明ABCEBC,得到BE=BA延长BC交AE于F,由CE=CA,BE=BA,根据到线段两个端点距离相等的点在这条线段的垂直平分线上,可知BC是线段AE的垂直平分线,即AFC=90°,在RtAFC中解直角三角形得A
21、F=,在RtAFB中,ABC=45°,解直角三角形得AB=AF=,进而得到BE的长.【详解】解:在ABC中,ABC=45°,BAC=15°,ACB=120°,将ACB沿直线AC翻折,得ACD,ACE=ACB=120°,DAE=DAC=BAC=15°,即CAE=30°,在ACE中,CEA=180°-ACE-CAE=30°,AC=EC,又ECB=360°-ACE-ACB=120°,在EBC和ABC中,EBCABC,BE=BA.如下图,延长BC交AE于F,CE=CA,BE=BA,BC是线段A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 36 三角形 2020 全国 中考 数学 真题分项 汇编 02 通用 解析

链接地址:https://www.taowenge.com/p-4850324.html
限制150内