专题46四边形(5)-2020年全国中考数学真题分项汇编(第02期全国通用)(原卷版)(,).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《专题46四边形(5)-2020年全国中考数学真题分项汇编(第02期全国通用)(原卷版)(,).doc》由会员分享,可在线阅读,更多相关《专题46四边形(5)-2020年全国中考数学真题分项汇编(第02期全国通用)(原卷版)(,).doc(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题46四边形(5)(全国一年)学校:_姓名:_班级:_考号:_一、解答题1(2020·江苏淮安?中考真题)(初步尝试)(1)如图,在三角形纸片中,将折叠,使点与点重合,折痕为,则与的数量关系为 ;(思考说理)(2)如图,在三角形纸片中,将折叠,使点与点重合,折痕为,求的值(拓展延伸)(3)如图,在三角形纸片中,将沿过顶点的直线折叠,使点落在边上的点处,折痕为求线段的长;若点是边的中点,点为线段上的一个动点,将沿折叠得到,点的对应点为点,与交于点,求的取值范围2(2020·湖北黄冈?中考真题)已知抛物线与x轴交于点,点,与y轴交于点,顶点为点D(1)求抛物线的解析式;(2)
2、若过点C的直线交线段AB于点E,且,求直线CE的解析式(3)若点P在抛物线上,点Q在x轴上,当以点D、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点,在抛物线对称轴上找一点F,使的值最小此时,在抛物线上是否存在一点K,使的值最小,若存在,求出点K的坐标;若不存在,请说明理由3(2020·湖北咸宁?中考真题)定义:有一组对角互余的四边形叫做对余四边形理解:(1)若四边形是对余四边形,则与的度数之和为_;证明:(2)如图1,是的直径,点在上,相交于点D求证:四边形是对余四边形;探究:(3)如图2,在对余四边形中,探究线段,和之间有怎样的数量关系?写出猜想,并说明理由4
3、(2020·北京中考真题)在中,是的中点为直线上一动点,连接,过点作,交直线于点,连接(1)如图1,当是线段的中点时,设,求的长(用含的式子表示);(2)当点在线段的延长线上时,依题意补全图2,用等式表示线段,之间的数量关系,并证明5(2020·山东青岛?中考真题)已知:如图,在四边形和中,点在上,延长交于点,点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为,过点作于点,交于点设运动时间为解答下列问题: (1)当为何值时,点在线段的垂直平分线上?(2)连接,作于点,当四边形为矩形时,求的值;(3)连接,设四边形的面积为,求与的函数关系式;(4)点
4、在运动过程中,是否存在某一时刻,使点在的平分线上?若存在,求出的值;若不存在,请说明理由6(2020·天津中考真题)将一个直角三角形纸片放置在平面直角坐标系中,点,点,点B在第一象限,点P在边上(点P不与点重合) (1)如图,当时,求点P的坐标;(2)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且,点O的对应点为,设如图,若折叠后与重叠部分为四边形,分别与边相交于点,试用含有t的式子表示的长,并直接写出t的取值范围;若折叠后与重叠部分的面积为S,当时,求S的取值范围(直接写出结果即可)7(2020·黑龙江牡丹江?中考真题)如图,已知直线与x轴交于点A,
5、与y轴交于点B,线段的长是方程的一个根,请解答下列问题:(1)求点A,B的坐标;(2)直线交x轴负半轴于点E,交y轴正半轴于点F,交直线于点C若C是的中点,反比例函数图象的一支经过点C,求k的值;(3)在(2)的条件下,过点C作,垂足为D,点M在直线上,点N在直线上坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由8(2020·贵州贵阳?中考真题)如图,四边形是正方形,点为对角线的中点(1)问题解决:如图,连接,分别取,的中点,连接,则与的数量关系是_,位置关系是_;(2)问题探究:如图,是将
6、图中的绕点按顺时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,判断的形状,并证明你的结论;(3)拓展延伸:如图,是将图中的绕点按逆时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,若正方形的边长为1,求的面积9(2020·江西中考真题)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积,之间的关系问题”进行了以下探究:类比探究(1)如图2,在中,为斜边,分别以为斜边向外侧作,若,则面积,之间的关系式为 ;推广验证(2)如图3,在中,为斜边,分别以为边向外侧作任意,满足,则(1)中所得关系式是否仍然成立?若成立,请证明
7、你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形中,点在上,求五边形的面积10(2020·黑龙江中考真题)如图,在中,点、分别在、边上,连接、,点、分别是、的中点,连接、(1)与的数量关系是_(2)将绕点逆时针旋转到图和图的位置,判断与有怎样的数量关系?写出你的猜想,并利用图或图进行证明11(2020·河南中考真题)将正方形的边绕点逆时针旋转至 ,记旋转角为连接,过点作垂直于直线,垂足为点,连接,如图1,当时,的形状为 ,连接,可求出的值为 ;当且时,中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;当以点为顶点的四边形是平
8、行四边形时,请直接写出的值12(2020·湖南衡阳?中考真题)如图1,平面直角坐标系中,等腰的底边在轴上,顶点在的正半轴上,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止另一动点从点出发,以相同的速度沿向左运动,到达点停止已知点、同时出发,以为边作正方形,使正方形和在的同侧设运动的时间为秒()(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,
9、求出点在正方形内(含边界)的时长;若不可能,请说明理由13(2020·湖南岳阳?中考真题)如图1,在矩形中,动点,分别从点,点同时以每秒1个单位长度的速度出发,且分别在边上沿,的方向运动,当点运动到点时,两点同时停止运动,设点运动的时间为,连接,过点作,与边相交于点,连接(1)如图2,当时,延长交边于点求证:;(2)在(1)的条件下,试探究线段三者之间的等量关系,并加以证明;(3)如图3,当时,延长交边于点,连接,若平分,求的值14(2020·湖南怀化?中考真题)如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点(1)求点C及顶点M的坐标(2)若点
10、N是第四象限内抛物线上的一个动点,连接求面积的最大值及此时点N的坐标(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形若存在,求出点G的坐标;若不存在,试说明理由(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与相似若存在,求出点P的坐标;若不存在,请说明理由15(2020·山东菏泽?中考真题)如图1,四边形的对角线,相交于点, 图1 图2 (1)过点作交于点,求证:;(2)如图2,将沿翻折得到求证:;若,求证:16(2020·山东临沂?中考真题)已知的半径为,的半径为
11、,以为圆心,以的长为半径画弧,再以线段的中点P为圆心,以的长为半径画弧,两弧交于点A,连接,交于点B,过点B作的平行线交于点C(1)求证:是的切线;(2)若,求阴影部分的面积17(2020·山东临沂?中考真题)如图,菱形的边长为1,点E是边上任意一点(端点除外),线段的垂直平分线交,分别于点F,G,的中点分别为M,N(1)求证:;(2)求的最小值;(3)当点E在上运动时,的大小是否变化?为什么?18(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点为坐标原点,直线与轴的正半轴交于点A,与轴的负半轴交于点B, ,过点A作轴的垂线与过点O的直线相交于点C,直线OC
12、的解析式为,过点C作轴,垂足为(1)如图1,求直线的解析式;(2)如图2,点N在线段上,连接ON,点P在线段ON上,过P点作轴,垂足为D,交OC于点E,若,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作轴的平行线交BQ于点G,连接PF交轴于点H,连接EH,若,求点P的坐标19(2020·安徽中考真题)如图1已知四边形是矩形点在的延长线上与相交于点,与相交于点求证:;若,求的长;如图2,连接,求证:20(2020·四川南充?中考真题)如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A
13、,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON(1)求证:AM=BN;(2)请判断OMN的形状,并说明理由;(3)若点K在线段AD上运动(不包括端点),设AK=x,OMN的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且OMN的面积为,请直接写出AK长21(2020·四川甘孜?中考真题)如图,在平面直角坐标系中,直线分别交x轴、y轴于A,B两点,经过A,B两点的抛物线与x轴的正半轴相交于点(1)求抛物线的解析式;(2)若P为线段AB上一点,求AP的长;(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得
14、以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由22(2020·黑龙江绥化?中考真题)如图,在正方形中,点G在边上,连接,作于点E,于点F,连接、,设,(1)求证:;(2)求证:;(3)若点G从点B沿边运动至点C停止,求点E,F所经过的路径与边围成的图形的面积23(2020·重庆中考真题)如图,在平面直角坐标系中,已知抛物线与直线AB相交于A,B两点,其中,(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线,平移后的抛物线与原抛物线相
15、交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由24(2020·江苏连云港?中考真题)(1)如图1,点为矩形对角线上一点,过点作,分别交、于点、若,的面积为,的面积为,则_; (2)如图2,点为内一点(点不在上),点、分别为各边的中点设四边形的面积为,四边形的面积为(其中),求的面积(用含、的代数式表示);(3)如图3,点为内一点(点不在上)过点作,与各边分别相交于点、设四边形的面积为,四边形的面积为(其中),求的面积(用含、的代数式表示); (4)如图4,点、把四等分
16、请你在圆内选一点(点不在、上),设、围成的封闭图形的面积为,、围成的封闭图形的面积为,的面积为,的面积为根据你选的点的位置,直接写出一个含有、的等式(写出一种情况即可)25(2020·山东德州?中考真题)问题探究:小红遇到这样一个问题:如图1,中,AD是中线,求AD的取值范围她的做法是:延长AD到E,使,连接BE,证明,经过推理和计算使问题得到解决请回答:(1)小红证明的判定定理是:_;(2)AD的取值范围是_;方法运用:(3)如图2,AD是的中线,在AD上取一点F,连结BF并延长交AC于点E,使,求证:(4)如图3,在矩形ABCD中,在BD上取一点F,以BF为斜边作,且,点G是DF
17、的中点,连接EG,CG,求证:26(2020·四川遂宁?中考真题)如图,抛物线yax2+bx+c(a0)的图象经过A(1,0),B(3,0),C(0,6)三点(1)求抛物线的解析式(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将ABD的面积分为1:2两部分,求点E的坐标(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由27(2020·四川攀枝花?中考真题)实验学校某班开展数学“综合与实践”测量活动有两座垂直
18、于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线的距离皆为王诗嬑观测到高度矮圆柱的影子落在地面上,其长为;而高圆柱的部分影子落在坡上,如图所示已知落在地面上的影子皆与坡脚水平线互相垂直,并视太阳光为平行光,测得斜坡坡度,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为,且此刻她的影子完全落在地面上,则影子长为多少?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为,则高圆柱的高度为多少? 28(2020·山东聊城?中考真题)如图,二次
19、函数的图象与轴交于点,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点(1)求出二次函数和所在直线的表达式;(2)在动直线移动的过程中,试求使四边形为平行四边形的点的坐标;(3)连接,在动直线移动的过程中,抛物线上是否存在点,使得以点,为顶点的三角形与相似,如果存在,求出点的坐标,如果不存在,请说明理由29(2020·四川乐山?中考真题)点是平行四边形的对角线所在直线上的一个动点(点不与点、重合),分别过点、向直线作垂线,垂足分别为点、点为的中点(1)如图1,当点与点重合时,线段
20、和的关系是 ;(2)当点运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点在线段的延长线上运动,当时,试探究线段、之间的关系30(2020·山东济宁?中考真题)如图,在菱形ABCD中,AB=AC,点E、F、G分别在边BC、CD上,BE=CG,AF平分EAG,点H是线段AF上一动点(与点A不重合)(1)求证:AEHAGH;(2)当AB=12,BE=4时:求DGH周长的最小值;若点O是AC的中点,是否存在直线OH将ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3若存在,请求出的值;若不存在,请说明理由 31(202
21、0·浙江金华?中考真题)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F, 已知OB=8(1)求证:四边形AEFD为菱形(2)求四边形AEFD的面积(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P, Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由32(2020·浙江衢州?中考真题)(性质探究)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分BAC,交BC于点E作DFAE于点H,分别交AB,AC于点F,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 46 四边形 2020 全国 中考 数学 真题分项 汇编 02 通用 原卷版
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-4850385.html
限制150内