固体物理复习总结(共18页).doc
《固体物理复习总结(共18页).doc》由会员分享,可在线阅读,更多相关《固体物理复习总结(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一章 晶体结构 1、试说明空间点阵和晶体结构的区别。答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,它是由几何点在三维空间理想的周期性规则排列而成,由于各阵点的周围环境相同,它只能有14种类型。 晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。2、证明体心立方格子和面心立方格子互为倒格子证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):由倒格子基矢的定义:,同理可得:即面心立方的倒格子基矢与体心立方
2、的正格基矢相同。所以,面心立方的倒格子是体心立方。(2)体心立方的正格子基矢(固体物理学原胞基矢):由倒格子基矢的定义:,同理可得:即体心立方的倒格子基矢与面心立方的正格基矢相同。所以,体心立方的倒格子是面心立方。3、六角密堆结构的固体物理学元胞基矢为求其倒格基矢。解:晶胞体积为 其倒格矢为 4、一晶体原胞基矢大小,基矢间夹角,。试求:(1) 倒格子基矢的大小;(2) 正、倒格子原胞的体积;(3) 正格子(210)晶面族的面间距。 解:(1) 由题意可知,该晶体的原胞基矢为: 由此可知: = = = 所以 (2) 正格子原胞的体积为:倒格子原胞的体积为:(3)根据倒格子矢量与正格子晶面族的关系
3、可知,正格子(210)晶面族的面间距为:= =5、已知半导体GaAs具有闪锌矿结构,Ga和As两原子的最近距离d2.4510-10m。试求:(1) 晶格常数;(2) 固体物理学原胞基矢和倒格子基矢;(3) 密勒指数为(110)晶面族的面间距;(4) 密勒指数为(110)和(111)晶面法向方向间的夹角。解:(1)由题意可知,GaAs的晶格为复式面心立方晶格,其原胞包含一个Ga原子和一个As原子,其中Ga原子处于面心立方位置上,而As原子则处于立方单元体对角线上距离Ga原子1/4体对角线长的位置上,如左图所示:由此可知: Ga原子 As原子故 = (2)由于GaAs的空间点阵为面心立方结构,故其
4、固体物理学原胞基矢为:其倒格子基矢为: (3)密勒指数为(110)晶面族的面间距为:(4)根据倒格子矢的性质可知,密勒指数为(110)和(111)晶面法向方向间的夹角即为倒格子矢和之间的夹角,设为,则有: 6、Si具有金刚石结构,其原子间距为0.235nm,原子量为28,计算的Si密度。解:Si为金刚石结构,为两个面心立方沿体对角线移动1/4,因此体对角线的长度为L=0.2354=0.94nm;金刚石结构的晶胞边长为晶胞的体积为每个晶胞包含8个原子则1摩尔(28克)包含的晶胞数目为N=0.7528751023,对应体积为V=Nv=12.0344cm3,密度为m=28/V=2.327克/cm3第
5、二章 晶格动力学1、什么是简谐近似?为什么简谐近似下晶格振动的简正模式是独立的,声子气体是理想气体?解:1当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。这个近似即称为简谐近似。2简谐近似下,点阵振动的简正模式是独立的,声子气体是理想气休考虑到非简谐效应,各格波可以有相互作用,声子气体是非理想气体,但在势能的非简谐项比简谙项小得多的情况下,声子气体仍可近似地当作理想气体处理,不过这时要考虑声子与声子的碰撞这是因为没有声子与声子之间的碰撞,点阵就不可能过渡到热平衡分布,同时也没有点阵热阻2 、什么是晶格振动的光学支和声学支?
6、长光学支格波与长声学支格波本质上有何差别?答:1离子晶体在某种光波的照射下,光波的电场可以激发这种原胞中的两种原子基本上作相对振动,而原胞的质心基本保持不动晶格振动,因此称这种振动为光学波或光学支或光频支。在长波极限下,原胞内两种原子的运动完全一致,振幅和位相均相同,这时的格波非常类似于声波,所以将这种晶格振动称为声学波或声学支或声频支。原胞中的两种原子的振动位相基本相同,原胞基本上是作为一个整体振动,而原胞中两种原子基本上无相对振动。2长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移,
7、 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.3 、周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q的取值将会怎样?解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。其具体含义是设想在一长为Na的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j个
8、原子和第jtN个原子的运动情况一样,其中t1,2,3。引入这个条件后,导致描写晶格振动状态的波矢q只能取一些分立的不同值。如果晶体是无限大,波矢q的取值将趋于连续。4、一维无限长原子链,原子质量为m和M,且mM。相邻原子间距均为a,恢复力系数为b,晶格常量为2a 。试证明格波的色散关系:解:5、在一维双原子链中,如,(1)求证:; 。(2)画出与的关系图(设)。解:(1)在一维双原子链中,其第个原子与第个原子的运动方程为 (1)为解方程组(1)可令 (2)将(2)式代入(1)式可得出 (3)从、有非零解,方程组(3)的系数行列式等于零的条件出发,可得 可解出得 (4)当(4)式中取“”号时,有
9、 (5),(5)式中有,那么(5)式可简化为 当(4)式中取“”号时,有 (6),(6)式中有,那么(6)式可简化为 (2)当时,则(4)式可化为O此时,与的关系图,即色散关系图如下图3.5所示:图3.5 一维双原子链振动的色散关系曲线6、在一维双原子晶格振动的情况下,证明在布里渊区边界处,声学支格波中所有轻原子静止,而光学支格波中所有重原子静止。2)q0,声学支和光学支格波分别有什么特点?解:设第个原子为轻原子,其质量为,第个原子为重原子,其质量为,则它们的运动方程为 (1)为解方程组(1)可令 (2)将(2)式代入(1)式可得出 (3)从、有非零解,方程组(3)的系数行列式等于零的条件出发
10、,可得 可解出得 (4)令,则可求得声学支格波频率为,光学支格波频率为由方程组(3)可知,在声学支中,轻原子与重原子的振幅之比为 由此可知,声学支格波中所有轻原子静止。而在光学支中,重原子与轻原子的振幅之比为 由此可知,光学支格波中所有重原子静止。2)声学支格波特点:原胞中两种不同原子的振动位相基本上相反,即原胞中的两种原子基本上作相对振动,而原胞的质心基本保持不动 。光学支格波分特点:原胞中的两种原子的振动位相基本相同,原胞基本上是作为一个整体振动,而原胞中两种原子基本上无相对振动。第三章 金属自由电子理论1、请推导出绝对零度下金属自由电子费米能量的表达式EF;对于一个简单立方点阵的单价金属
11、,已知晶格常数为a=3*10-10nm,请计算费米能量EF、费米波矢kF、费米温度TF及费米面上电子波长F。解:1自由电子状态密度 :金属中的电子浓度为:因此, 2电子浓度n, n=1/a3=1/(3*10-8)3=3.704*1022cm-3费米波矢 费米温度 因而,费米面上电子波长为 费米能量EF=4.05eV费米波矢kF=1.031*108cm-1费米温度TF=47000K费米面上电子波长F=6.094*10-8cm=6,094 2、限制在边长为的正方形中的个自由电子,电子的能量为。试求:(1)能量之间的状态数;(2)此二维系统在绝对零度的费米能量EF;(3)电子的平均能量。解:(1)K
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 物理 复习 总结 18
限制150内