《高二上期数学文科复习知识点总结.doc》由会员分享,可在线阅读,更多相关《高二上期数学文科复习知识点总结.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、知识点梳理一、立体几何1多面体的结构特征(1)棱柱(2)棱锥(3)棱台棱锥被平行于棱锥底面的平面所截,截面与底面之间的部分2旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形一条直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线3直观图(1)画法:常用斜二测画法(2)规则:原图形中x轴、y轴、z轴两两垂直,直观图中,x轴、y轴的夹角为45(或135),z轴与x轴和y轴所在平面垂直原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半4三视图(1)几何体的三视图包括正
2、(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线(2)三视图的画法基本要求:长对正,高平齐,宽相等画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线5圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(rr)l6空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR3二、点线面的位置关系1四个公理公理1:如果一条直线上的两点在一个平面内,那
3、么这条直线在此平面内公理2:过不在一条直线上的三点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线公理4:平行于同一条直线的两条直线互相平行2空间直线的位置关系(1)位置关系的分类:(2)异面直线所成的角:定义:设a,b是两条异面直线,经过空间中任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角)范围:.(3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补3空间直线与平面,平面与平面之间的位置关系图形语言符号语言公共点直线与平面相交aA1个平行a0个在平面内a无数个平面与平面平行0个相交l无
4、数个4直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行线面平行)la,a,l,l性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行线线平行”)l,l,b,lb5平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行面面平行”)a,b,abP,a,b,性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行,a,b,ab6直线与平面垂直(1)直线和平面垂直的定义:直
5、线l与平面内的任意一条直线都垂直,就说直线l与平面互相垂直(2)直线与平面垂直的判定定理及性质定理:文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 l性质定理垂直于同一个平面的两条直线平行ab7平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面互相垂直性质定理两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面l三、直线与方程1直线的倾斜角(1)定义:x轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角当直线与x轴平行或重合时,规定它的倾斜角为0. (2)倾斜角的范围为0,)2直
6、线的斜率(1)定义:一条直线的倾斜角的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即ktan_,倾斜角是90的直线没有斜率(2)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1x2)的直线的斜率公式为k.3直线方程名称几何条件方程局限性点斜式过点(x0,y0),斜率为kyy0k(xx0)不含垂直于x轴的直线斜截式斜率为k,纵截距为bykxb不含垂直于x轴的直线两点式过两点(x1,y1),(x2,y2),(x1x2,y1y2)不包括垂直于坐标轴的直线截距式在x轴、y轴上的截距分别为a,b(a,b0)1不包括垂直于坐标轴和过原点的直线一般式AxByC0(A,B不全
7、为0)4两直线的位置关系斜截式一般式方程yk1xb1yk2xb2A1xB1yC10(AB0)A2xB2yC20(AB0)相交k1k2A1B2A2B10垂直k1或k1k21A1A2B1B20 平行k1k2且b1b2或5两直线的交点设两条直线的方程是l1:A1xB1yC10,l2:A2xB2yC20,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立6几种距离(1)两点间的距离:平面上的两点A(x1,y1),B(x2,y2)间的距离公式d(A,B)|AB|.(2)点到直线的距离:点P(x1,y1)到
8、直线l:AxByC0的距离d.(3)两条平行线间的距离:两条平行线AxByC10与AxByC20间的距离d.四、圆与方程1圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(xa)2(yb)2r2(r0)圆心:(a,b),半径:r一般方程x2y2DxEyF0(D2E24F0)圆心:,半径:2点与圆的位置关系点M(x0,y0)与圆(xa)2(yb)2r2的位置关系:(1)若M(x0,y0)在圆外,则(x0a)2(y0b)2r2.(2)若M(x0,y0)在圆上,则(x0a)2(y0b)2r2.(3)若M(x0,y0)在圆内,则(x0a)2(y0b)2b0)1(ab0)图形性质范
9、围axabybbxbaya对称性对称轴:x轴、y轴对称中心:(0,0)顶点A1(a,0),A2(a,0)B1(0,b),B2(0,b)A1(0,a),A2(0,a)B1(b,0),B2(b,0)轴长轴A1A2的长为2a短轴B1B2的长为2b焦距|F1F2|2c离心率e,e(0,1)a,b,c的关系c2a2b23双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离4双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴对称中心:原
10、点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,),其中c实虚轴线段A1A2叫作双曲线的实轴,它的长|A1A2|2a;线段B1B2叫作双曲线的虚轴,它的长|B1B2|2b;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长a、b、c的关系c2a2b2(ca0,cb0)5抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F距离与到定直线l的距离相等;(3)定点不在定直线上6抛物线的标准方程和几何性质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离图形顶点O
11、(0,0)对称轴y0x0焦点F(,0)F(,0)F(0,)F(0,)离心率e1准线方程xxyy范围x0,yRx0,yRy0,xRy0,xR开口方向向右向左向上向下焦半径(其中P(x0,y0)|PF|x0|PF|x0|PF|y0|PF|y07直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程AxByC0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程即消去y,得ax2bxc0.(1)当a0时,设一元二次方程ax2bxc0的判别式为,则0直线与圆锥曲线C相交;0直线与圆锥曲线C相切;0,a1)f(x)
12、_(a0,a1)f(x)exf(x)_f(x)logax(a0,a1,且x0)f(x)_(a0,a1,且x0)f(x)ln xf(x)_5导数运算法则(1)f(x)g(x)_;(2)f(x)g(x)_;(3)_ g(x)06复合函数的求导法则:设函数u(x)在点x处有导数ux(x),函数yf(u)在点x处的对应点u处有导数yuf(u),则复合函数yf(x)在点x处有导数,且yxyuux,或写作fx(x)f(u)(x)7导数和函数单调性的关系:(1)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是_函数,f(x)0的解集与定义域的交集的对应区间为_区间;(2)若f(x)0在(a,b)
13、上恒成立,则f(x)在(a,b)上是_函数,f(x)0的解集与定义域的交集的对应区间为_区间;(3)若在(a,b)上,f(x)0,且f(x)在(a,b)的任何子区间内都不恒等于零f(x)在(a,b)上为_函数,若在(a,b)上,f(x)0,且f(x)在(a,b)的任何子区间内都不恒等于零f(x)在(a,b)上为_函数8函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,如果在x0附近的左侧_,右侧_,那么f(x0)是极大值;如果在x0附近的左侧_,右侧_,那么f(x0)是极小值(2)求可导函数极值的步骤求f(x);求方程_的根;检查f(x)在方程_的根左右值的符号如果左正右负,那么f(x)在这个根处取得_;如果左负右正,那么f(x)在这个根处取得_9函数的最值(1)函数f(x)在a,b上必有最值的条件如果函数yf(x)的图象在区间a,b上_,那么它必有最大值和最小值(2)求函数yf(x)在a,b上的最大值与最小值的步骤:求函数yf(x)在(a,b)内的_;将函数yf(x)的各极值与_比较,其中最大的一个是最大值,最小的一个是最小值
限制150内