安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解答.doc
《安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解答.doc》由会员分享,可在线阅读,更多相关《安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解答.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、黄山市20182019学年度第一学期期末质量检测高二(文科)数学试题第卷(选择题 满分60分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线a平行于平面,则下列结论错误的是( )A. 直线a上的点到平面的距离相等B. 直线a平行于平面内的所有直线C. 平面内有无数条直线与直线a平行D. 平面内存在无数条直线与直线a成90角【答案】B【解析】【分析】由题意,根据两直线的位置关系的判定,以及直线与平面的位置关系,逐一判定,即可得到答案.【详解】由题意,直线a平行于平面,则对于A中,直线a上的点到平面的距离相等是正确的;对于B中,直线
2、a与平面内的直线可能平行或异面,所以不正确;对于C中,平面内有无数条直线与直线a平行是正确的;对于D中,平面内存在无数条直线与直线a成90角是正确的,故选D.【点睛】本题主要考查了空间中两直线的位置关系的判定,其中解答中熟记空间中两条直线的三种位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点关于平面的对称点是( )A. B. C. D. 【答案】D【解析】【分析】空间直角坐标系中任一点关于坐标平面的对称点为,即可求得答案【详解】根据空间直角坐标系中点的位置关系可得点关于平面的对称点是故选【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间
3、直角坐标系,以及坐标系中点之间的位置关系,属于基础题。3.已知,则“”是“直线与直线垂直”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】【分析】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案【详解】充分性:当时,两条直线分别为:与此时两条直线垂直必要性:若两条直线垂直,则,解得故“”是“直线与直线垂直”的充分不必要条件故选【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。4.设矩形边长分别为,将其按两种方式卷成高为和
4、的圆柱(无底面),其体积分别为和,则与的大小关系是( )A. B. C. D. 不确定【答案】C【解析】【分析】根据题意,分别求得卷得圆柱的底面圆的半径,利用圆柱的体积公式,求解两圆柱的体积,比较即可得到答案.【详解】由题意,当卷成高为的圆柱时,此时设圆柱的底面半径为,则,解得,则圆柱的体积为,当卷成高为的圆柱时,此时设圆柱的底面半径为,则,解得,则圆柱的体积为,又由,所以,即,故选C.【点睛】本题主要考查了圆柱的侧面展开图,以及圆柱的体积的计算问题,其中解答解答中,根据题意求解两圆柱的底面圆的半径,利用圆柱的体积公式,准确求解圆柱的体积是解答的关键,着重考查了推理与计算能力,属于基础题.5.
5、若从集合中随机取一个数,从集合中随机取一个数,则直线不经过第四象限的概率为( )A. B. C. D. 【答案】C【解析】【分析】集合,分别有3个元素,则一共可以构成9条不同的直线,要使直线不经过第四象限,则需要满足,然后再确定出满足题意的情况数,最后结合概率公式求解即可【详解】由题意可知本题是一个古典概型,试验发生包含的事件,得到的取值所有可能的结果是:,共9种结果由可得,当时,直线不经过第四象限,符合条件的的有,则直线不经过第四象限的概率为故选【点睛】本题属于概率的计算问题,熟练掌握一次函数的图象和性质以及概率的计算公式是解题的关键,属于基础题。6.若直线与直线关于点(2,1)对称,则直线
6、恒过定点( )A. B. C. D. 【答案】B【解析】【分析】由题意,设直线上的任意一点,则点A关于点的对称点为,又由点在直线上,代入求得直线的方程,即可求解答案.【详解】由题意,设直线上的任意一点,则点A关于点的对称点为,又由点在直线上,即,整理得,令,即时,可得直线过定点,故选B.【点睛】本题主要考查了直线过定点问题,以及直线关于点的对称问题,其中解答中根据对称性求得直线的方程,进而判定直线过定点是解答的关键,着重考查了推理与计算能力,属于基础题.7.已知是双曲线的一条渐近线,则双曲线的离心率为( )A. B. C. D. 或【答案】A【解析】【分析】求出双曲线的渐近线方程,可得,由的关
7、系和离心率公式计算即可求得答案【详解】双曲线的渐近线方程为由题意可得,即有可得故选【点睛】本题主要考查了双曲线的几何性质,由已知条件计算出之间的关系是解题关键,属于基础题8.一个棱锥的三视图如图所示,则该棱锥的体积是( )A. B. C. D. 【答案】D【解析】【分析】由三视图可知几何体为三棱锥,且该三棱锥的底面为底边边长为2,高为2的等腰三角形,高为,利用体积公式,即可求解.【详解】由三视图可知几何体为三棱锥,如图所示,根据三视图可知,该三棱锥的底面为底边边长为2,高为2的等腰三角形,高为,底面面积为,所以该三棱锥的体积为,故选D.【点睛】本题考查了几何体的三视图及几何体的体积的计算,在由
8、三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.9.若直线将圆平分,且不通过第四象限,则直线斜率的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】由直线将圆平分得直线过圆心,再由直线不经过第四象限,即可求解直线的斜率的取值范围,得到答案.【详解】由圆的方程,可知圆心坐标为,因为直线将圆平分,所以直线过圆心,又由直线不经过第四象限,所以直线的斜率的最小值为,斜率的最大
9、值为,所以直线的斜率的取值范围是,故选B.【点睛】本题主要考查了直线的斜率的取值范围的求法,以及直线与圆的位置关系的应用,其中解答中认真审题,得到直线必过圆的圆心,再根据斜率公式求解是解答的关键,同时属于圆的性质的合理运用,着重考查了推理与计算能力,属于基础题.10.设实数对满足,则该实数对满足的概率为( )A. B. C. D. 【答案】C【解析】【分析】由题意,得到表示的区域为圆及圆内的部分,又由不等式表示直线的右上方的部分,作出图形,求得其面积,根据面积比的几何概型,即可求解概率.【详解】由题意,可知圆,表示圆心坐标,半径是的圆,其中表示的区域为圆及圆内的部分,又由不等式表示直线的右上方
10、的部分,如图所示,则阴影部分的面积为,又由圆的面积为,所以概率为,故选C.【点睛】本题主要考查了面积比的几何概型及其概率的计算问题,其中解答中根据题意,画出相应的图形,分别求解其面积,利用面积比求解概率是解答的关键,着重考查了推理与计算能力,属于基础题.11.两圆与只有一条公切线,则的最小值为( )A. B. C. D. 【答案】C【解析】【分析】由两圆的标准方程,求得圆心坐标和半径,再由题意可知两圆相内切,求得,利用基本不等式即可求解的最小值,得到答案.【详解】由题意可知两圆相内切,又由两圆的标准方程为,可的圆心分别为,半径分别为2和1,则,所以,又由,当且仅当时等号成立,所以,所以的最小值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安徽省黄山市2018-2019学年高二上学期期末考试数学文试题 Word版含解答 安徽省 黄山市 2018 2019 学年 高二上 学期 期末考试 数学 试题 Word 解答
限制150内