8.4.1 平面-2020-2021学年高一数学新教材配套学案(人教A版2019必修第二册).docx
《8.4.1 平面-2020-2021学年高一数学新教材配套学案(人教A版2019必修第二册).docx》由会员分享,可在线阅读,更多相关《8.4.1 平面-2020-2021学年高一数学新教材配套学案(人教A版2019必修第二册).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8.4.1平 面【学习目标】素 养 目 标学 科 素 养1.了解平面的概念,掌握平面的画法及表示方法2.能用符号语言描述空间点、直线、平面之间的位置关系 3.能用图形、文字、符号三种语言描述三个公理,理解三个公理的地位与作用1.直观想象;2.逻辑推理【自主学习】一平面1.概念:平面是从生活中抽象出来的,具有以下特点:平;无限延展,没有边界;没有厚薄2.画法(1)我们常用矩形的直观图,即 表示平面(2)当平面水平放置时,常把平行四边形的一边画成 ;当平面竖直放置时,常把平行四边形的一边画成 3.表示法:我们常用希腊字母 等表示平面,如平面 、平面、平面等,并将它写在代表平面的平行四边形的一个角内
2、;也可以用代表平面的平行四边形的四个顶点,如 ,或者相对的两个顶点的大写英文字母作为这个平面的名称,如 或 二文字语言与符号语言的对应关系:文字语言表达符号语言表示文字语言表达符号语言表示点A在直线l上点A在直线l外点A在平面内点A在平面外直线l在平面内直线l在平面外直线l,m相交于点A平面,相交于直线l三平面的基本性质及应用基本事实内容图形符号作用基本事实1过不在一条直线上的三个点, 一个平面A,B,C三点不共线存在唯一的平面使A,B,C一是确定平面;二是证明点、线共面问题;三是判断两个平面重合的依据基本事实2如果一条直线上的 在一个平面内,那么这条直线在 Al,Bl,且A,Bl既可判定直线
3、和点是否在平面内,又能说明平面是无限延展的基本事实3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的 P且Pl,且Pl判定两平面相交的依据判定点在直线上三个推论:推论1 ,有且只有一个平面.推论2 ,有且只有一个平面.推论3 ,有且只有一个平面.【小试牛刀】1.思考辨析(正确的画“”,错误的画“”)(1)平面是处处平的面 ()(2)平面是无限延展的 ()(3)平面的形状是平行四边形 ()(4)一个平面的厚度可以是0.001 cm. ()2.用符号表示“点A在直线l上,l在平面外”,正确的是()AAl,lBAl,lCAl,lDAl,l3(多选)如图所示的平行四边形MNPQ表示的平面
4、可以记为()A平面MN B平面NQPC平面 D平面MNPQ【经典例题】题型一 三种语言的相互转化点拨:三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)要注意符号语言的意义,如点与直线的位置关系只能用“”或“”,直线与平面的位置关系只能用“”或“”.例1 用符号语言表示下面语句,并画出图形:(1)三个平面、相交于一点P,且平面与平面交于PA,平面与平面交于PB,平面与平面交于PC.(2)点A,B在平面内,直线a与平面交于点C,点C不在直线AB上【跟踪训练】1 根据图,填入相应的符
5、号:A_平面ABC,A_平面BCD,BD_平面ABC,平面ABC平面ACD_;题型二 点线共面问题点拨:在证明多线共面时,可用下面的两种方法来证明(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)同一法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内,然后证明这两个平面重合,即证得所有元素在同一个平面内.例2 已知直线ab,直线l与a,b都相交,求证:过a,b,l有且只有一个平面.【跟踪训练】2如图,已知:a,b,abA,Pb,PQa,求证:PQ.题型三 三点共线问题 点拨:证明三点共线的方法(1)首先找出两个平面,然后证明这三点都是这两个平面的公共点,根
6、据基本事实3可知,这些点都在两个平面的交线上(2)选择其中两点确定一条直线,然后证明另一点也在此直线上例3 如图,E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA上的点,且直线EH与直线FG交于点O.求证:B,D,O三点共线【跟踪训练】3已知ABC在平面外,ABP,ACR,BCQ,如图.求证:P、Q、R三点共线.题型四 三线共点问题点拨:证明三线共点的思路(1)首先说明两条直线共面且交于一点(2)说明这个点在另两个平面上,并且这两个平面相交(3)得到交线也过此点,从而得到三线共点例4 如图,已知空间四边形ABCD中,E、H分别为BC、AB的中点,F在CD上,G在AD上,且有DF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 8.4.1 平面-2020-2021学年高一数学新教材配套学案人教A版2019必修第二册 8.4 平面 2020 2021 学年 数学 新教材 配套 人教 2019 必修 第二
链接地址:https://www.taowenge.com/p-48744723.html
限制150内