基于SVPWM的永磁同步电机控制系统的仿真样本.doc
《基于SVPWM的永磁同步电机控制系统的仿真样本.doc》由会员分享,可在线阅读,更多相关《基于SVPWM的永磁同步电机控制系统的仿真样本.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、资料内容仅供您学习参考,如有不当之处,请联系改正或者删除。基于SVPWM的永磁同步电机控制系统的仿真随着电动机在社会生产中的广泛应用, 由于永磁同步电机具有结构简单、 体积小、 效率高、 转矩电流比高、 转动惯量低, 易于散热及维护等优点, 特别是随着永磁材料价格的下降、 材料的磁性能的提高、 以及新型的永磁材料的出现, 在中小功率、 高精度、 高可靠性、 宽调速范围的伺服控制系统中, 永磁同步电动机引起了众多研究与开发人员的青睐, 其应用领域逐步推广, 特别在航空航天、 数控机床、 加工中心、 机器人等场合已获得广泛的应用。中国制作永磁电机永磁材料的稀土资源丰富, 稀土资占全世界的80以上,
2、 发展永磁电机具有广阔的前景。第一章 永磁同步电机的矢量控制原理1.1 永磁同步电机控制中应用的坐标系交流电机的数学模型具有高阶次, 多变量耦合, 非线性等特征, 难以直接应用于系统的设计和控制, 与直流电机单变量, 自然解耦和线性的数学模型相比较, 交流电机显得异常复杂。因此需要经过适当的转换, 将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制, 即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型, 可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解, 使得能够用两相正交绕组
3、来等效实际电动机的三相绕组。由于两相绕组的正交性, 变量之间的耦合大大减小。1.1.1系统中的坐标系1)三相定子坐标系(U-V-W坐标系)其中三相交流电机绕组轴线分别为U、 V、 W, 彼此之间互差120度空间电角度, 构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投影代表了该矢量在三个绕组上的分量。2)两相定子坐标系(-坐标系)两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量, 数学描述时习惯采用两相直角坐标系来描述, 因此定义一个两相静止坐标系, 即-坐标系。它的轴和三相定子坐标系的A轴重合, 轴逆时针超前轴90度空间电角度。由于轴固定在定子A相绕组轴线上,
4、 因此-坐标系也是静止坐标系。3)转子坐标系(d-q坐标系)转子坐标系d轴位于转子磁链轴线上, q轴逆时针超前d轴90度空间电角度, 该坐标系和转子一起在空间上以转子角速度旋转, 故为旋转坐标系。对于同步电动机, d轴是转子磁极的轴线。矢量控制中用到的变换有: 将三相平面坐标系向两相平面直角坐标系的转换(Clarke变换)和将两相静止直角坐标系向两相旋转直角坐标系的变换(Park变换)。1.1.2 由三项平面坐标系向两相平面坐标系( Clarke变换) 三相同步电动机的集中绕组U、 V、 W的轴线在与转子垂直的平面分布如上图所示, 轴线依次相差120, 可将每相绕组在气隙中产生的磁势分别记为:
5、 Fu、 Fv、 Fw。由于Fu、 Fv、 Fw不会在轴向上产生分量, 因此能够把气隙内的磁场简化为一个二维的平面场。简单起见, 能够U为轴, 由起逆时针旋转90作轴, 建立起二维坐标系, 用此两相坐标系( -) 产生的磁动势来等效三相静止坐标系( U-V-W) 产生的磁动势。如图1.1所示。图1.1 Clarke变换用F来表示三相绕组所产生的总磁动势, 分别表示, 轴上的集中绕组所产生的磁动势, 则三相绕组在气隙中产生F能够由, 两相绕组来等效产生, 按总磁势、 总功率不变的原则, 整理可得( 1-1) 关系式: ( 1-1) 1.1.3 两相静止直角坐标系向两相旋转直角坐标系变换( Par
6、k变换) 经过Clarke变换后的到得-坐标系是静止的, 所表示的电流依然是交流电流, 与直流电动机相比还有很大的差别, 因此依然需要进一步变换。为模拟直流电动机的电枢磁动势与主磁场相互垂直, 能够建立如下图所示的d-q绕组模型。图中d与q垂直, 分别通以直流电流Id, Iq。产生的合成磁势对绕组来说是固定的, 可是如果让整个坐标系以电机的同步速旋转, 就能够等效为三相绕组U、 V、 W产生的旋转磁动势, 从而达到等效变换的效果。 从两相静止坐标系-到两相旋转坐标系的变换如图1.2所示: 图1.2 Park变换根据磁动势等效的原则, 可得-坐标系向d-q坐标系变换的矩阵关系式( 1-2) 为:
7、 ( 1-2) 取反变换后能够得到d-q轴坐标系向-坐标系转换的矩阵关系式( 1-3) 为: ( 1-3) 1.1.4 永磁同步电机d-q轴数学模型永磁同步电机是由电磁式同步电动机发展而来, 它用永磁体代替了电励磁, 从而省去了励磁线圈、 滑环和电刷, 而定子与电磁式同步电机基本相同。永磁同步电机在d-q坐标系的数学模型描述如下: 模型的建立基于下面的假设: 1忽略电机铁心的饱和; 2不计电机中的涡流和磁滞损耗: 3电机电流为对称的三相正弦电流(即只考虑电流基波)。在永磁同步电机中, 建立固定于转子的参考坐标, 取磁极轴线为d轴, 顺着旋转方向超前90。电角度为q轴, 以a相绕组轴线为参考轴线
8、, d轴与参考轴之间的电角度为, 如图1.3所示。图1.3 永磁同步电机d-q轴模型1.2 矢量控制的基本概念由于异步电机的动态数学模型是一个高阶、 非线性、 强耦合的多变量系统。上世纪70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制是电动机控制理论的第一次质的飞跃, 解决了交流电机的调速问题, 使得交流电机的控制跟直流电机控制一样的方便可行, 而且能够获得与直流调速系统相媲美的动态功能。其基本思想是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律, 在磁场定向坐标上, 将电流矢量分解成为产生磁通的励磁电流分量和产生转矩的转矩电流
9、分量, 并使得两个分量互相垂直, 彼此独立, 然后分别进行调节。交流电机的矢量控制使转矩和磁通的控制实现解耦。所谓解耦指的是控制转矩时不影响磁通的大小, 控制磁通时不影响转矩。这样交流电动机的转矩控制, 从原理和特性上就和直流电动机相似了。因此矢量控制的关键仍是对电流矢量的幅值和空间位置(频率和相位)的控制。矢量控制是经过对两个电流分量的分别控制实现的。根据电机方程所确定的电磁关系, 一定的转矩和转速对应于一定的id和iq, 经过对这两个电流的控制, 跟踪相应的给定值, 便实现了对电机转矩和转速的控制。而且由于位于d, q轴的电流分量相互正交, 使对转矩的控制和对磁场的控制实现了解耦, 因此便
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 SVPWM 永磁 同步电机 控制系统 仿真 样本
限制150内