备战中考数学二次函数的综合热点考点难点附详细答案.doc





《备战中考数学二次函数的综合热点考点难点附详细答案.doc》由会员分享,可在线阅读,更多相关《备战中考数学二次函数的综合热点考点难点附详细答案.doc(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、备战中考数学二次函数的综合热点考点难点附详细答案一、二次函数1已知二次函数的最大值为4,且该抛物线与轴的交点为,顶点为.(1)求该二次函数的解析式及点,的坐标;(2)点是轴上的动点,求的最大值及对应的点的坐标;设是轴上的动点,若线段与函数的图像只有一个公共点,求的取值范围.【答案】(1),点坐标为,顶点的坐标为;(2)最大值是,的坐标为,的取值范围为或或.【解析】【分析】(1)先利用对称轴公式x=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P、C、D三点共线时|PC-PD|取得最大值,求出直线CD与x轴的交点坐标,就是此时点P的
2、坐标;(3)先把函数中的绝对值化去,可知,此函数是两个二次函数的一部分,分三种情况进行计算:当线段PQ过点(0,3),即点Q与点C重合时,两图象有一个公共点,当线段PQ过点(3,0),即点P与点(3,0)重合时,两函数有两个公共点,写出t的取值;线段PQ与当函数y=a|x|2-2a|x|+c(x0)时有一个公共点时,求t的值;当线段PQ过点(-3,0),即点P与点(-3,0)重合时,线段PQ与当函数y=a|x|2-2a|x|+c(x0)时也有一个公共点,则当t-3时,都满足条件;综合以上结论,得出t的取值【详解】解:(1),的对称轴为.人最大值为4,抛物线过点.得,解得.该二次函数的解析式为.
3、点坐标为,顶点的坐标为.(2),当三点在一条直线上时,取得最大值.连接并延长交轴于点,.的最大值是.易得直线的方程为.把代入,得.此时对应的点的坐标为.的解析式可化为设线段所在直线的方程为,将,的坐标代入,可得线段所在直线的方程为.(1)当线段过点,即点与点重合时,线段与函数的图像只有一个公共点,此时.当时,线段与函数的图像只有一个公共点.(2)当线段过点,即点与点重合时,线段与函数的图像只有一个公共点,此时.当线段过点,即点与点重合时,此时线段与函数的图像有两个公共点.所以当时,线段与函数的图像只有一个公共点.(3)将带入,并整理,得.令,解得.当时,线段与函数的图像只有一个公共点.综上所述
4、,的取值范围为或或.【点睛】本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解2如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的
5、坐标;若不存在,请说明理由【答案】(1)抛物线解析式为y=x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(,)或(,),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时BDM的周长最小,然后求出直线DB的解析式即可得到点M的坐标;(3)过点C作
6、AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标详解:(1)设抛物线解析式为y=a(x+1)(x3),即y=ax22ax3a,2a=2,解得a=1,抛物线解析式为y=x2+2x+3;当x=0时,y=x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(1,0),C(0,3)代入得,解得,直线AC的解析式为y=3x+3;(2)y=x2+2x+3=(x1)2+4,顶
7、点D的坐标为(1,4),作B点关于y轴的对称点B,连接DB交y轴于M,如图1,则B(3,0),MB=MB,MB+MD=MB+MD=DB,此时MB+MD的值最小,而BD的值不变,此时BDM的周长最小,易得直线DB的解析式为y=x+3,当x=0时,y=x+3=3,点M的坐标为(0,3);(3)存在过点C作AC的垂线交抛物线于另一点P,如图2,直线AC的解析式为y=3x+3,直线PC的解析式可设为y=x+b,把C(0,3)代入得b=3,直线PC的解析式为y=x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=x+b,把A(1,0)代入得+
8、b=0,解得b=,直线PC的解析式为y=x,解方程组,解得或,则此时P点坐标为(,).综上所述,符合条件的点P的坐标为(,)或(,).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题3如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直
9、线BD于点M(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将AOC绕平面内某点H顺时针旋转90,得到A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标【答案】(1)y=-+x+2;(2)存在,Q(3,2)或Q(-1,0);(3)两个和谐点,A1的横坐标是1,.【解析】【分析】(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利
10、用待定系数法求解; (2)分两种情况分别讨论,当QBM=90或MQB=90,即可求得Q点的坐标 (3)(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1), 当A1、C1在抛物线上时,A1的横坐标是1; 当O1、C1在抛物线上时,A1的横坐标是2;【详解】解:(1)设抛物线解析式为y=ax2+bx+c,将点A(-1,0),B(4,0),C(0,2)代入解析式,y=-+x+2;(2)点C与点D关于x轴对称,D(0,-2)设直线BD的解析式为y=kx-2将(4,0)代入得:4k-2=0,k=直线BD的解析式为y=x-2当P点与A点重合时,BQM是直角
11、三角形,此时Q(-1,0);当BQBD时,BQM是直角三角形,则直线BQ的直线解析式为y=-2x+8,-2x+8=-+x+2,可求x=3或x=4(舍)x=3;Q(3,2)或Q(-1,0);(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),当A1、C1在抛物线上时,A1的横坐标是1;当O1、C1在抛物线上时,A1的横坐标是;【点睛】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称-最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键4已知,抛物线yx2+bx+c经过点A(1,0)和C(0,3)(1)求抛物线的解析式
12、;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当MAC是直角三角形时,求点M的坐标【答案】(1);(2)当的值最小时,点P的坐标为;(3)点M的坐标为、或.【解析】【分析】由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;连接BC交抛物线对称轴于点P,此时取最小值,利用二次函数图象上点的坐标特征可求出点B的坐标,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P的坐标;设点M的坐标为,则,分、和三种情况,利
13、用勾股定理可得出关于m的一元二次方程或一元一次方程,解之可得出m的值,进而即可得出点M的坐标【详解】解:将、代入中,得:,解得:,抛物线的解析式为连接BC交抛物线对称轴于点P,此时取最小值,如图1所示当时,有,解得:,点B的坐标为抛物线的解析式为,抛物线的对称轴为直线设直线BC的解析式为,将、代入中,得:,解得:,直线BC的解析式为当时,当的值最小时,点P的坐标为设点M的坐标为,则,分三种情况考虑:当时,有,即,解得:,点M的坐标为或;当时,有,即,解得:,点M的坐标为;当时,有,即,解得:,点M的坐标为综上所述:当是直角三角形时,点M的坐标为、或【点睛】本题考查待定系数法求二次一次函数解析式
14、、二次一次函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:由点的坐标,利用待定系数法求出抛物线解析式;由两点之间线段最短结合抛物线的对称性找出点P的位置;分、和三种情况,列出关于m的方程5已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(2,0),点P是线段AB上方抛物线上的一个动点(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由【答
15、案】(1)抛物线解析式为y=x2+2x+6;(2)当t=3时,PAB的面积有最大值;(3)点P(4,6)【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PMOB与点M,交AB于点N,作AGPM,先求出直线AB解析式为y=x+6,设P(t,t2+2t+6),则N(t,t+6),由SPAB=SPAN+SPBN=PNAG+PNBM=PNOB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PHOB知DHAO,据此由OA=OB=6得BDH=BAO=45,结合DPE=90知若PDE为等腰直角三角形,则EDP=45,从而得出点E与点A重合,求出y=6时x的值即可得出答案【详解】(1)
16、抛物线过点B(6,0)、C(2,0),设抛物线解析式为y=a(x6)(x+2),将点A(0,6)代入,得:12a=6,解得:a=,所以抛物线解析式为y=(x6)(x+2)=x2+2x+6;(2)如图1,过点P作PMOB与点M,交AB于点N,作AGPM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:,解得:,则直线AB解析式为y=x+6,设P(t,t2+2t+6)其中0t6,则N(t,t+6),PN=PMMN=t2+2t+6(t+6)=t2+2t+6+t6=t2+3t,SPAB=SPAN+SPBN=PNAG+PNBM=PN(AG+BM)=PNOB=(t2+3t)6
17、=t2+9t=(t3)2+,当t=3时,PAB的面积有最大值;(3)如图2,PHOB于H,DHB=AOB=90,DHAO,OA=OB=6,BDH=BAO=45,PEx轴、PDx轴,DPE=90,若PDE为等腰直角三角形,则EDP=45,EDP与BDH互为对顶角,即点E与点A重合,则当y=6时,x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6)【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.6如图,关于x的二次函数y=x2+bx+
18、c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式; (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积【答案】(1)二次函数的表达式为:y=x24x+3;(2)点P的坐标为:(0,3+3)或(0,33)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,MN
19、B面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当PBC为等腰三角形时分三种情况进行讨论:CP=CB;BP=BC;PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2t,SMNB=(2t)2t=t2+2t,把解析式化为顶点式,根据二次函数的性质即可得MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个
20、单位处【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=4,c=3,二次函数的表达式为:y=x24x+3;(2)令y=0,则x24x+3=0,解得:x=1或x=3,B(3,0),BC=3,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PCOC=33P1(0,3+3),P2(0,33);当PB=PC时,OP=OB=3,P3(0,-3);当BP=BC时,OC=OB=3此时P与O重合,P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,33)或(3,0)或(0,0);(3)如图2,设A
21、M=t,由AB=2,得BM=2t,则DN=2t,SMNB=(2t)2t=t2+2t=(t1)2+1,当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处7我们知道,经过原点的抛物线解析式可以是。(1)对于这样的抛物线:当顶点坐标为(1,1)时,a= ;当顶点坐标为(m,m),m0时,a 与m之间的关系式是 ;(2)继续探究,如果b0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,An在直线上,横坐标依次为1,2,n(n为正整数,且n12),分别过每个顶点作x轴的垂线,垂
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 中考 数学 二次 函数 综合 热点 考点 难点 详细 答案

限制150内