一元一次方程应用题归类汇集含答案资料59624.doc
《一元一次方程应用题归类汇集含答案资料59624.doc》由会员分享,可在线阅读,更多相关《一元一次方程应用题归类汇集含答案资料59624.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.页脚.一元一次方程应用题归类汇集一元一次方程应用题归类汇集一般行程问题(相遇与追击问题)一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度时间时间路程速度速度路程时间2.行程问题基本类型(1)相遇问题:快行距慢行距原距(2)追及问题:快行距慢行距原距1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的速度为每小时 40 千米,设甲、乙两地相距x千米,则列方程为。解:等量关系步行时间乘公交车的时间3.6 小时2、某人从家里骑自行车到学校。若每小时行 15 千米,可比预定时间早到 15 分钟;若每小时行 9 千米,可比预定时间晚
2、到 15 分钟;求从家里到学校的路程有多少千米?解:等量关系 速度 15 千米行的总路程速度 9 千米行的总路程速度 15 千米行的时间15 分钟速度 9 千米行的时间15 分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。方法一:方法二:3、一列客车车长 200 米,一列货车车长 280 米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过 16 秒,已知客车与货车的速度之比是 3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。等量关系:快车行的路程慢车行的路程两列火车的车长之和设客车的速度为 3x米/秒,货车的速度为
3、 2x米/秒,4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时 3.6km,骑自行车的人的速度是每小时 10.8km。如果一列火车从他们背后开来,它通过行人的时间是 22秒,通过骑自行车的人的时间是 26 秒。行人的速度为每秒多少米?这列火车的车长是多少米?提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。等量关系:两种情形下火车的速度相等 两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。解:行人的速度是:3.6km/时3600 米3600 秒1 米/秒骑自行车的人的速度是:10.8km/时10800 米
4、3600 秒3 米/秒 方法一:设火车的速度是 x 米/秒,则 26(x3)22(x1)解得x4方法二:设火车的车长是 x 米,则2632622122xx.页脚.6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是 60 千米/时,步行的速度是 5 千米/时,步行者比汽车提前 1 小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是 60 千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)提醒:此类题相当于环形跑道问题,两者行的总路程为一圈即 步行者行的总路程汽车行的总路程602解:设步行者在出发后经过
5、x 小时与回头接他们的汽车相遇,7、某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可在规定的时间到达 B 地,但他因事将原计划的时间推迟了 20 分,便只好以每小时 15 千米的速度前进,结果比规定时间早 4 分钟到达 B 地,求 A、B 两地间的距离。解:方法一:设由 A 地到 B 地规定的时间是x小时,则12x604602015xx212x12224(千米)方法二:设由 A、B 两地的距离是x千米,则(设路程,列时间等式)60460201512xxx24答:A、B 两地的距离是 24 千米。温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。8
6、、一列火车匀速行驶,经过一条长 300m 的隧道需要 20s 的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是 10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。解析:只要将车尾看作一个行人去分析即可,前者为此人通过 300 米的隧道再加上一个车长,后者仅为此人通过一个车长。此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。解:方法一:设这列火车的长度是x米,根据题意,得1020300 xxx300答:这列火车长 300 米。方法二:设这列火车的速度是 x 米/秒,根据题意,得 20 x30010 xx3010 x300答:这列火
7、车长 300 米。9、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用 15 小时,开通高速铁路后,车速平均每小时比原来加快了 60 千米,因此从甲地到乙地只需要 10 小时即可到达,列方程得。答案:601510 xx11、甲、乙两人同时从 A 地前往相距 25.5 千米的 B 地,甲骑自行车,乙步行,甲的速度比乙的速度的 2 倍还快 2 千米/时,甲先到达 B 地后,立即由 B 地返回,在途中遇到乙,这时距他们出发时已过了 3 小时。求两人的速度。.页脚.10、两列火车分别行驶在平行的轨道上,其中快车车长为 100 米,慢车车长 150 米,已知当两车相向而行时,快车驶过慢车某个窗口所用的
8、时间为 5 秒。两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少?如果两车同向而行,慢车速度为 8 米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?解析:快车驶过慢车某个窗口时:研究的是慢车窗口的人和快车车尾的人的相遇问题,此时行驶的路程和为快车车长!慢车驶过快车某个窗口时:研究的是快车窗口的人和慢车车尾的人的相遇问题,此时行驶的路程和为慢车车长!快车从后面追赶慢车时:研究的是快车车尾的人追赶慢车车头的人的追击问题,此时行驶的路程和为两车车长之和!解:两车的速度之和100520(米/秒)慢车经过快车某一窗口所用
9、的时间150207.5(秒)设至少是x秒,(快车车速为 208)则(208)x8x100150 x62.5答:至少 62.5 秒快车从后面追赶上并全部超过慢车。二、环行跑道与时钟问题:二、环行跑道与时钟问题:2、甲、乙两人在 400 米长的环形跑道上跑步,甲分钟跑 240 米,乙每分钟跑 200 米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?老师提醒:此题为环形跑道上,同时同地同向的追击与相遇问题。例 1某队伍 450 米长,以每分钟 90 米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为 3 米/秒.问往返共需多少时间?讲评:这一问题实际上分为两个过程:从排尾
10、到排头的过程是一个追及过程,相当于最后一个人追上最前面的人;从排头回到排尾的过程则是一个相遇过程,相当于从排头走到与排尾的人相遇.在追及过程中,设追及的时间为 x 秒,队伍行进(即排头)速度为 90 米/分=1.5 米/秒,则排头行驶的路程为 1.5x米;追及者的速度为 3 米/秒,则追及者行驶的路程为 3x 米.由追及问题中的相等关系“追赶者的路程被追者的路程=原来相隔的路程”,有:3x1.5x=450 x=300在相遇过程中,设相遇的时间为 y 秒,队伍和返回的人速度未变,故排尾人行驶的路程为 1.5y 米,返回者行驶的路程为 3y 米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程=
11、总路程”有:3y+1.5y=450 y=100故往返共需的时间为 x+y=300+100=400(秒)例 2 汽车从 A 地到 B 地,若每小时行驶 40km,就要晚到半小时:若每小时行驶 45km,就可以早到半小时.求 A、B 两地的距离.讲评:先出发后到、后出发先到、快者要早到慢者要晚到等问题,我们通常都称其为“先后问题”.在这类问题中主要考虑时间量,考察两者的时间关系,从相隔的时间上找出相等关系.本题中,设 A、B 两地的路程为x km,速度为 40 km/小时,则时间为小时;速度为 45 km/小时,则时间为小时,又早到与晚到之间相隔 1 小时,故有三、行船与飞机飞行问题:三、行船与飞
12、机飞行问题:航行问题:顺水(风)速度静水(风)速度水流(风)速度.页脚.逆水(风)速度静水(风)速度水流(风)速度 水流速度=(顺水速度-逆水速度)21、一艘船在两个码头之间航行,水流的速度是 3 千米/时,顺水航行需要 2 小时,逆水航行需要 3小时,求两码头之间的距离。解:设船在静水中的速度是 x 千米/时,则2、一架飞机飞行在两个城市之间,风速为每小时 24 千米,顺风飞行需要 2 小时 50 分钟,逆风飞行需要 3 小时,求两城市间的距离。解:3、小明在静水中划船的速度为 10 千米/时,今往返于某条河,逆水用了 9 小时,顺水用了 6 小时,求该河的水流速度。解:4、某船从 A 码头
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元一次方程 应用题 归类 汇集 答案 资料 59624
限制150内