备战中考数学——二次函数的综合压轴题专题复习附答案.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《备战中考数学——二次函数的综合压轴题专题复习附答案.doc》由会员分享,可在线阅读,更多相关《备战中考数学——二次函数的综合压轴题专题复习附答案.doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、备战中考数学二次函数的综合压轴题专题复习附答案一、二次函数1在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C(1)填空:该抛物线的“衍生直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ;(2)如图,点M为线段CB上一动点,将ACM以AM所在直线为对称轴翻折,点C的对称点为N,若AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生
2、直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由【答案】(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作ADy轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可【详解】(1),a=,则抛物线的“衍生直线”的解析式为;联立两解析式
3、求交点,解得或,A(-2,),B(1,0);(2)如图1,过A作ADy轴于点D,在中,令y=0可求得x= -3或x=1,C(-3,0),且A(-2,),AC=由翻折的性质可知AN=AC=,AMN为该抛物线的“衍生三角形”,N在y轴上,且AD=2,在RtAND中,由勾股定理可得DN=,OD=,ON=或ON=,N点的坐标为(0,),(0,);(3)当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AKx轴于点K,则有ACEF且AC=EF, ACK= EFH,在 ACK和 EFH中 ACK EFH,FH=CK=1,HE=AK=,抛物线的对称轴为x=-1, F点的横坐标为0或-2,点F
4、在直线AB上,当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,E到y轴的距离为EH-OF=-=,即E的纵坐标为-, E(-1,-);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;当AC为平行四边形的对角线时, C(-3,0),且A(-2,),线段AC的中点坐标为(-2.5, ),设E(-1,t),F(x,y),则x-1=2(-2.5),y+t=,x= -4,y=-t,-t=-(-4)+,解得t=,E(-1,),F(-4,);综上可知存在满足条件的点F,此时E(-1,-)、(0,)或E(-1,),F(-4,)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及
5、辅助线方法是解决本题的关键,属于压轴题2如图,抛物线yax2+bx+3(a0)的对称轴为直线x1,抛物线交x轴于A、C两点,与直线yx1交于A、B两点,直线AB与抛物线的对称轴交于点E(1)求抛物线的解析式(2)点P在直线AB上方的抛物线上运动,若ABP的面积最大,求此时点P的坐标(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标【答案】(1)yx22x+3;(2)点P(,);(3)符合条件的点D的坐标为D1(0,3),D2(6,3),D3(2,7)【解析】【分析】(1)令y0,求出点A的坐标,根据抛物线的对称轴是x1,求出点C的坐标,再根据待
6、定系数法求出抛物线的解析式即可;(2)设点P(m,m22m+3),利用抛物线与直线相交,求出点B的坐标,过点P作PFy轴交直线AB于点F,利用SABPSPBF+SPFA,用含m的式子表示出ABP的面积,利用二次函数的最大值,即可求得点P的坐标;(3)求出点E的坐标,然后求出直线BC、直线BE、直线CE的解析式,再根据以点B、E、C、D为顶点的四边形是平行四边形,得到直线D1D2、直线D1D3、直线D2D3的解析式,即可求出交点坐标【详解】解:(1)令y0,可得:x10,解得:x1,点A(1,0),抛物线yax2+bx+3(a0)的对称轴为直线x1,1213,即点C(3,0), ,解得: 抛物线
7、的解析式为:yx22x+3;(2)点P在直线AB上方的抛物线上运动,设点P(m,m22m+3),抛物线与直线yx1交于A、B两点, ,解得:, 点B(4,5),如图,过点P作PFy轴交直线AB于点F,则点F(m,m1),PFm22m+3m+1m23m+4,SABPSPBF+SPFA(m23m+4)(m+4)+(m23m+4)(1m)-(m+ )2+ ,当m时,P最大,点P(,).(3)当x1时,y112,点E(1,2),如图,直线BC的解析式为y5x+15,直线BE的解析式为yx1,直线CE的解析式为yx3,以点B、C、E、D为顶点的四边形是平行四边形,直线D1D3的解析式为y5x+3,直线D
8、1D2的解析式为yx+3,直线D2D3的解析式为yx9,联立 得D1(0,3),同理可得D2(6,3),D3(2,7),综上所述,符合条件的点D的坐标为D1(0,3),D2(6,3),D3(2,7)【点睛】本题考查二次函数的综合应用,解决第(2)小题中三角形面积的问题时,找到一条平行或垂直于坐标轴的边是关键;对于第(3)小题,要注意分类讨论、数形结合的运用,不要漏解3如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5)()求二次函数的解析式及点A,B的坐标;()设点Q在第一象限的抛物线上,若其关于原点的对称点Q也在抛物线上,
9、求点Q的坐标;()若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标【答案】(1)y=x2+4x+5,A(1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M(3,8),N(2,3)【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,m2+4m+5),则其关于原点的对称点Q(m,m24m5),再将Q坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK对称轴x=2于K,使MK=OC
10、,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】()设二次函数的解析式为y=a(x2)2+9,把C(0,5)代入得到a=1,y=(x2)2+9,即y=x2+4x+5,令y=0,得到:x24x5=0,解得x=1或5,A(1,0),B(5,0)()设点Q(m,m2+4m+5),则Q(m,m24m5)把点Q坐标代入y=x2+4x+5,得到:m24m5=m24m+5,m=或(舍弃),Q(,)()如图,作MK对称轴x=2于K当MK=OA,NK=OC=5时,四边形ACNM是平行四边形此时点M的横坐标为1,y=8,M(1,8),N(2,13),当MK=OA=1,KN=OC=5时,四边形ACMN是平行
11、四边形,此时M的横坐标为3,可得M(3,8),N(2,3)【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.4已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点.(1)如图1,若二次函数图象也经过点,试求出该二次函数解析式,并求出的值.(2)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.【答案】(1),;(2)当时,;当时,;当时,【解析】【分析】(1)根据一次函数表达式求出B点坐标,然后根据B点在抛物线上,求出b值,从而得到二次函数表达式,再根据二次函数表达式求出A点的坐标,最后代入一次函数求出m值.(2)根
12、据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案【详解】(1)如图1,直线与轴交于点为,点坐标为又在抛物线上,解得二次函数的表达式为当时,得,代入得,(2)如图2,根据题意,抛物线的顶点为,即点始终在直线上,直线与直线交于点,与轴交于点,而直线表达式为解方程组,得点,点在内,当点关于抛物线对称轴(直线)对称时,且二次函数图象的开口向下,顶点在直线上综上:当时,;当时,;当时,.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.5如图,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C
13、.(1)求抛物线的表达式;(2)如图,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.若点P的横坐标为,求DPQ面积的最大值,并求此时点D 的坐标;直尺在平移过程中,DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)点D( );PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出
14、直线PQ的表达式,过点D作DEy轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+),进而即可得出DE的长度,利用三角形的面积公式可得出SDPQ=-2x2+6x+,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出SDPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题详解
15、:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:,解得:,抛物线的表达式为y=-x2+2x+3(2)(I)当点P的横坐标为-时,点Q的横坐标为,此时点P的坐标为(-,),点Q的坐标为(,-)设直线PQ的表达式为y=mx+n,将P(-,)、Q(,-)代入y=mx+n,得:,解得:,直线PQ的表达式为y=-x+如图,过点D作DEy轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+),DE=-x2+2x+3-(-x+)=-x2+3x+,SDPQ=DE(xQ-xP)=-2x2+6x+=-2(x-)2+8-20,当x=时,DPQ的面积取最大值,最大
16、值为8,此时点D的坐标为(,)(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),DE=-x2+2x+3-2(t+1)x+t2+4t+3=-x2+2(t+2)x-t2-4t,SDPQ=DE(xQ-xP)=-2x2+4(t+2)x-2t2-8t=-2x-(t+2)2+8-20,当x=t+2时,DPQ的面积取最大值,最大值为8
17、假设成立,即直尺在平移过程中,DPQ面积有最大值,面积的最大值为8点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出SDPQ=-2x2+6x+;(II)利用三角形的面积公式找出SDPQ=-2x2+4(t+2)x-2t2-8t6如图,已知二次函数的图象过点O(0,0)A(8,4),与x轴交于另一点B,且对称轴是直线x3(1)求该二次函数的解析式;(2)若M是OB上的一点,作MNAB交OA于N,当ANM面积最大时,求M的坐标;
18、(3)P是x轴上的点,过P作PQx轴与抛物线交于Q过A作ACx轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标【答案】(1);(2)当t3时,SAMN有最大值3,此时M点坐标为(3,0);(3)P点坐标为(14,0)或(2,0)或(4,0)或(8,0)【解析】【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为直线AB的解析式为y=2x-12,直线MN的解析式为y=2x-2t,再通过解方程组得N(),接着利用三角形面积公式,利用SAMN=SAOM-SNOM得到然后根据二次函数的性质解
19、决问题;(3)设Q,根据相似三角形的判定方法,当时,PQOCOA,则;当时,PQOCAO,则,然后分别解关于m的绝对值方程可得到对应的P点坐标【详解】解:(1)抛物线过原点,对称轴是直线x3,B点坐标为(6,0),设抛物线解析式为yax(x6),把A(8,4)代入得a824,解得a,抛物线解析式为yx(x6),即yx2x;(2)设M(t,0),易得直线OA的解析式为yx,设直线AB的解析式为ykx+b,把B(6,0),A(8,4)代入得,解得,直线AB的解析式为y2x12,MNAB,设直线MN的解析式为y2x+n,把M(t,0)代入得2t+n0,解得n2t,直线MN的解析式为y2x2t,解方程
20、组得,则,SAMNSAOMSNOM ,当t3时,SAMN有最大值3,此时M点坐标为(3,0);(3)设,OPQACO,当时,PQOCOA,即,PQ2PO,即,解方程得m10(舍去),m214,此时P点坐标为(14,0);解方程得m10(舍去),m22,此时P点坐标为(2,0);当时,PQOCAO,即,PQPO,即,解方程得m10(舍去),m28,此时P点坐标为(8,0);解方程得m10(舍去),m24,此时P点坐标为(4,0);综上所述,P点坐标为(14,0)或(2,0)或(4,0)或(8,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系
21、数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题7如图,直线y-x-3与x轴,y轴分别交于点A,C,经过点A,C的抛物线yax2+bx3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DEx轴于点E,连接AD,DC设点D的横坐标为m(1)求抛物线的解析式;(2)当点D在第三象限,设DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若EADOBC,请直接写出此时点D的坐标【答案】(1)yx2+x3;(2)SADC=(m+3)2+;ADC的面积最大值为;此时D(3,);(3)满足条件的点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 中考 数学 二次 函数 综合 压轴 专题 复习 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内