《高三数学教案平面向量的数量积与应用新人教版.doc》由会员分享,可在线阅读,更多相关《高三数学教案平面向量的数量积与应用新人教版.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优质文本普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案讲座26平面向量的数量积及应用一课标要求:1平面向量的数量积通过物理中功等实例,理解平面向量数量积的含义及其物理意义;体会平面向量的数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。2向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,开展运算能力和解决实际问题的能力。二命题走向本讲以选择题、填空题考察本章的根本概念和性质,重点考察平面向量的数量积的
2、概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值59分。平面向量的综合问题是“新热点题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。预测07年高考:1一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。2一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;三要点精讲1向量的数量积1两个非零向量的夹角非零向量a与a,作,那么AA叫与的夹角;说明:1当时,与同向;2当时,与反向;3当时,与垂直,记;4注意在两向量的夹角定义,两向量必须是同起点的,范围0q180。C2数量积的概念两个非零向量与,它们
3、的夹角为,那么=cos叫做与的数量积或内积。规定;向量的投影:cos=R,称为向量在方向上的投影。投影的绝对值称为射影;3数量积的几何意义: 等于的长度与在方向上的投影的乘积。4向量数量积的性质向量的模与平方的关系:。乘法公式成立;平面向量数量积的运算律交换律成立:;对实数的结合律成立:;分配律成立:。向量的夹角:cos=。当且仅当两个非零向量与同方向时,=00,当且仅当与反方向时=1800,同时与其它任何非零向量之间不谈夹角这一问题。5两个向量的数量积的坐标运算两个向量,那么=。6垂直:如果与的夹角为900那么称与垂直,记作。两个非零向量垂直的充要条件:O,平面向量数量积的性质。7平面内两点
4、间的距离公式设,那么或。如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)。2向量的应用1向量在几何中的应用;2向量在物理中的应用。四典例解析题型1:数量积的概念例1判断以下各命题正确与否:1;2;3假设,那么;4假设,那么当且仅当时成立;5对任意向量都成立;6对任意向量,有。解析:1错;2对;3错;4错;5错;6对。点评:通过该题我们清楚了向量的数乘与数量积之间的区别于联系,重点清楚为零向量,而为零。例212002上海春,13假设、为任意向量,mR,那么以下等式不一定成立的是 A BCm=m+m D2(2000江西、山西、天津理,4)设、是任意的非零平面向量,且
5、相互不共线,那么= | 不与垂直3+232=9|24|2中,是真命题的有 A. B. C. D.解析:1答案:D;因为,而;而方向与方向不一定同向。2答案:D平面向量的数量积不满足结合律。故假;由向量的减法运算可知|、|、|恰为一个三角形的三条边长,由“两边之差小于第三边,故真;因为=假;3+232=94=9|24|2成立。故真。点评:此题考查平面向量的数量积及运算律,向量的数量积运算不满足结合律。题型2:向量的夹角例3106全国1文,1向量、满足、,且,那么与的夹角为 A B C D206北京文,12向量=(cos,sin),=(cos,sin),且,那么与的夹角的大小是 。3两单位向量与的
6、夹角为,假设,试求与的夹角。42005北京3| |=1,| |=2,= + ,且,那么向量与的夹角为 A30B60C120D150解析:1C;2;3由题意,且与的夹角为,所以,同理可得。而,设为与的夹角,那么。4C;设所求两向量的夹角为即:所以点评:解决向量的夹角问题时要借助于公式,要掌握向量坐标形式的运算。向量的模的求法和向量间的乘法计算可见一斑。对于这个公式的变形应用应该做到熟练,另外向量垂直平行的充要条件必需掌握。例4106全国1理,9设平面向量、的和。如果向量、,满足,且顺时针旋转后与同向,其中,那么 A+= B-+=C+-= D+=206湖南理,5 且关于的方程有实根, 那么与的夹角
7、的取值范围是 A B C D解析:1D;2B;点评:对于平面向量的数量积要学会技巧性应用,解决好实际问题。题型3:向量的模例5106福建文,9向量与的夹角为,那么等于 A5B4C3D1206浙江文,5设向量满足,那么 A1 B2 C4 D5解析:1B;2D;点评:掌握向量数量积的逆运算,以及。例63,4,4,3,求x,y的值使(x+y),且x+y=1。解析:由3,4,4,3,有x+y=(3x+4y,4x+3y);又x+y(x+y)3(3x+4y)+4(4x+3y)=0;即25x+24y ;又x+y=1x+y;x+4yx+3y;整理得25x48xy+25y即x(25x+24y)+24xy+25y
8、 ;由有24xy+25y ;将变形代入可得:y=;再代回得:。点评:这里两个条件互相制约,注意表达方程组思想。题型4:向量垂直、平行的判定例7(2005广东12)向量,且,那么 。解析:,。例8,按以下条件求实数的值。1;2;。解析:1;2;。点评:此例展示了向量在坐标形式下的平行、垂直、模的根本运算。题型5:平面向量在代数中的应用例9。 分析:,可以看作向量的模的平方,而那么是、的数量积,从而运用数量积的性质证出该不等式。 证明:设 那么。点评:在向量这局部内容的学习过程中,我们接触了不少含不等式结构的式子,如等。例10,其中。 1求证:与互相垂直; 2假设与的长度相等,求。 解析:1因为
9、所以与互相垂直。 2, , 所以, , 因为, 所以, 有, 因为,故, 又因为,所以。点评:平面向量与三角函数在“角之间存在着密切的联系。如果在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性。假设根据所给的三角式的结构及向量间的相互关系进行处理。可使解题过程得到简化,从而提高解题的速度。题型6:平面向量在几何图形中的应用例112002年高考题两点,且点Px,y使得,成公差小于零的等差数列。1求证;2假设点P的坐标为,记与的夹角为,求。解析:1略解:,由直接法得2当P不在x轴上时,而所以,当P在x轴上时,上式仍成立。图1点评:由正弦面积公式得到了三角形面积与数量积
10、之间的关系,由面积相等法建立等量关系。例12用向量法证明:直径所对的圆周角是直角。:如图,AB是O的直径,点P是O上任一点不与A、B重合,求证:APB90。证明:联结OP,设向量,那么且,即APB90。点评:平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。题型7:平面向量在物理中的应用例13如下列图,正六边形PABCDE的边长为b,有五个力、作用于同一点P,求五个力的合力。解析:所求五个力的合力为,如图3所示,以PA、PE为边作平行四边形PAOE,那么,由正六边形的性质可知,且O点在PC上,以PB、PD为边作平行四边形PBFD
11、,那么,由正六边形的性质可知,且F点在PC的延长线上。由正六边形的性质还可求得故由向量的加法可知所求五个力的合力的大小为,方向与的方向相同。五思维总结1两个向量的数量积与向量同实数积有很大区别1两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定;2两个向量的数量积称为内积,写成;今后要学到两个向量的外积,而是两个向量的数量的积,书写时要严格区分.符号“ 在向量运算中不是乘号,既不能省略,也不能用“代替;3在实数中,假设a0,且ab=0,那么b=0;但是在数量积中,假设0,且=0,不能推出=。因为其中cosq有可能为0;4实数a、b、c(b0),那么ab=bc a=c。但是= ;如
12、右图:= |cosb = |OA|,c = |c|cosa = |OA| =,但 ; (5)在实数中,有() = (),但是() (),显然,这是因为左端是与c共线的向量,而右端是与共线的向量,而一般与c不共线。2平面向量数量积的运算律特别注意:1结合律不成立:;2消去律不成立不能得到;3=0不能得到=或=。3向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:求模长;求夹角;判垂直;4注重数学思想方法的教学数形结合的思想方法。
13、由于向量本身具有代数形式和几何形式双重身份,所以在向量知识的整个学习过程中,都表达了数形结合的思想方法,在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识。化归转化的思想方法。向量的夹角、平行、垂直等关系的研究均可化归为对应向量或向量坐标的运算问题;三角形形状的判定可化归为相应向量的数量积问题;向量的数量积公式,沟通了向量与实数间的转化关系;一些实际问题也可以运用向量知识去解决。分类讨论的思想方法。如向量可分为共线向量与不共线向量;平行向量共线向量可分为同向向量和反向向量;向量在方向上的投影随着它们之间的夹角的不同,有正数、负数和零三种情形;定比分点公式中的随分点P的位置不同,可以大于零,也可以小于零。5突出向量与其它数学知识的交汇“新课程增加了新的现代数学内容,其意义不仅在于数学内容的更新,更重要的是引入新的思维方法,可以更有效地处理和解决数学问题和实际应用问题。因此,新课程卷中有些问题属于新教材与旧教材的结合部,凡涉及此类问题,高考命题都采用了新旧结合,以新带旧或以新方法解决的方法进行处理,从中启示我们在高考学习中,应突出向量的工具性,注重向量与其它知识的交汇与融合,但不宜“深挖洞。我们可以预测近两年向量高考题的难度不会也不应该上升到压轴题的水平。
限制150内