类脑智能设备项目市场分析.docx
《类脑智能设备项目市场分析.docx》由会员分享,可在线阅读,更多相关《类脑智能设备项目市场分析.docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域/类脑智能设备项目市场分析类脑智能设备项目市场分析目录一、 产业环境分析3二、 建设重点3三、 必要性分析5四、 大数据系统和数据挖掘技术6五、 数据分析与挖掘概述10六、 环境承载力影响因素识别及评价指标12七、 资源环境承载力评价综合指标体系14八、 弹性系数法16九、 专家预测法17十、 项目基本情况19十一、 进度规划方案24项目实施进度计划一览表24十二、 投资计划26建设投资估算表28建设期利息估算表29流动资金估算表30总投资及构成一览表31项目投资计划与资金筹措一览表32一、 产业环境分析总体来看,“十三五”时期是贯彻落实国家“四个全面”战略的重要时期,是长沙转型创新发展的
2、关键时期,也是率先建成全面小康的决战时期,既面临重大机遇,也面临诸多挑战。我们必须立足市情,顺势而为,引领新常态,培育新动力,厚植新优势,推动长沙实现新一轮较快发展。二、 建设重点智能语音(中国声谷)产业基地。充分发挥省部合作机制,促进“中国声谷”扩容提质。加大智能语音技术应用,推动智能语音领域的工程技术创新及成果转化,在语音合成、语音识别、机器翻译等核心技术领域保持国际领先地位。依托国家大科学装置、国家重点实验室、大院大所及重点高校,加强人工智能核心基础产品研发,重点发展高精度的智能传感器、专用芯片、工业软件等人工智能核心基础产品。形成贯通智能语音、人工智能核心技术研发、基础平台和物联网等完
3、整产业链。智能机器人基地。依托“芜马合”等市龙头企业,加强与国内重点高校、科研机构及国家机器人创新中心合作攻关,提升机器人产品在传感、交互、控制、协作等方面的智能化水平。进一步运用机器视觉、人机协作等技术,促进工业机器人及智能制造技术在高强度、高柔性、高洁净度、高危险、高质量等重点领域场景的示范应用,全面提升工业机器人传感、控制、协作和决策性能。优先布局智能服务机器人发展,以智能感知、模式识别、智能分析和智能决策为重点,大力推进助老助残、医疗康复、养老陪护、消防救援等特定应用场景的智能服务机器人研发及产业化,将我省打造成全国乃至全球具有重要影响力的机器人全产业链发展高地。智能家居基地。依托家电
4、大省产业集群优势,整合利用创新资源进行智能化升级,重点支持智能传感、物联网、机器学习等技术在智能家居产品中的应用,大力开发智能家电、智能安防、智能家具、智能照明、智能洁具等智能家居产品,实现家居产品的人机对话、行为交互、设备互联和协同控制等。建设并推广一批智能家居测试评价、示范应用项目,提升家居产品的个性化、智能化服务能力。智能网联汽车基地。推动整车企业与省内外科研单位、企业开展合作,加快先进零部件及系统开发应用,突破先进车载智能传感系统、车载智能终端系统、自动驾驶模拟器、智能辅助驾驶系统等产品,开发具备高级别自动驾驶功能的智能网联汽车,实现特定场景规模应用。谋划建设智能网联汽车测试平台,实现
5、由封闭式简单场景测试体验逐步向开放式应用场景落地转化。类脑智能产业基地。依托中国科大类脑智能技术及应用国家工程实验室,建设类脑智能开放平台,支撑开展类脑认知与神经计算、类脑多模态感知与信息处理、类脑芯片与系统、量子人工智能、智能机器人等技术的研发与工程化,开发类脑智能操作系统、类脑神经芯片和类脑智能机器人等一系列类脑智能产品,推广一批类脑智能关键技术成果,并服务于交通、教育、电力、社会管理和医疗等应用领域。三、 必要性分析1、现有产能已无法满足公司业务发展需求作为行业的领先企业,公司已建立良好的品牌形象和较高的市场知名度,产品销售形势良好,产销率超过 100%。预计未来几年公司的销售规模仍将保
6、持快速增长。随着业务发展,公司现有厂房、设备资源已不能满足不断增长的市场需求。公司通过优化生产流程、强化管理等手段,不断挖掘产能潜力,但仍难以从根本上缓解产能不足问题。通过本次项目的建设,公司将有效克服产能不足对公司发展的制约,为公司把握市场机遇奠定基础。2、公司产品结构升级的需要随着制造业智能化、自动化产业升级,公司产品的性能也需要不断优化升级。公司只有以技术创新和市场开发为驱动,不断研发新产品,提升产品精密化程度,将产品质量水平提升到同类产品的领先水准,提高生产的灵活性和适应性,契合关键零部件国产化的需求,才能在与国外企业的竞争中获得优势,保持公司在领域的国内领先地位。四、 大数据系统和数
7、据挖掘技术(一)数据挖掘概述1大数据大数据是指超过既往数据库系统规模、传输速度和处理能力,或者既往数据库系统结构无法容纳的数据。大数据常以万亿或EB衡量,且种类多、实时性强,蕴藏的商业价值大。很多现有的新或旧的信息基础设施、工具和技术可用来开发和利用大数据中蕴藏的价值。大数据有各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章、买卖记录、网络日志、病历、事监控、视频和图像档案,及大型电子商务。大数据是数据挖掘产生与生存发展的土壤。如今数据每五年翻一番,面对前所未有的海量数据,为了从中发现有用的信息必须进行数据挖掘。此外,计算机存储、处理大量数据,以及运算的能力大为增强,为数据挖掘
8、创造了条件,使其成为一门独特的学科和技术。2数据挖掘与数据分析的区别数据挖掘与数据分析的主要区别在于:(1)处理工作量。数据分析的数据量可能并不大,而数据挖掘的数据量极大。(2)制约条件。数据分析是从某些假设出发,建立方程或模型,而数据挖掘不作假设,可以自动建立方程。(3)处理对象。数据分析往往是针对数字型数据,而数据挖掘对象类型繁多,例如图像、声音、文本等。(4)处理结果。数据分析可以解释结果的含义;数据挖掘的结果不易解释,着眼于预测未来,并提出决策建议。想要从数据中发现规律(即认知),往往需将数据分析和数据挖掘结合起来。(二)数据挖掘步骤按挖掘对象,数据挖掘分为数据库与数据仓库挖掘和网络挖
9、掘两种,各自步骤分述如下。1数据库与数据仓库挖掘数据挖掘一般有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘、模式评估和知识表示8个步骤。(1)信息收集。从确定的挖掘对象中提取特征,然后选择合适的收集方法,将收集到的信息存入数据库。对于海量数据,必须选择合适的数据仓库。(2)数据集成。把来源、格式、特点、性质不同的数据按逻辑或物理属性加以编排,以便以后使用。(3)数据规约。多数数据挖掘算法耗时很长,商业数据往往较多,数据挖掘更耗时间。数据规约就是简化已有可用数据集的表示,规约后数量大减,但仍能保持原数据的完整性,对规约数据的挖掘结果,与对规约前数据的挖掘结果相同或几乎相同。(4)数
10、据清理。有些数据不完整(属性缺少属性值)、含噪声(属性值错误),不一致(同一信息有多种表示),需要清理,使其完整、正确、一致后存入数据仓库。(5)数据变换。将数据变换成适合数据挖掘的形式。实数型数据,可将其分层和离散化。(6)数据挖掘。根据数据格式、属性与特点,选择合适的处理工具,例如统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络,取得有用的信息。(7)模式评估。由行业专家核实数据挖掘结果是否合理、是否可用。(8)知识表示。将数据挖掘得到的信息以可视方式交给用户,或作为新的知识存人知识库,供其他应用程序使用。并非所有的数据挖掘都要走上述的每一步。若只有一个数据源,则可以省略数据集成
11、。数据规约、数据清理、数据变换合称数据预处理。数据挖掘至少60%的费用要花在信息收集阶段,而至少60%以上的精力和时间要花在数据预处理上。数据挖掘是一个反复多次的过程,若一次未满足要求或未得到有用结果,则需回到前面,经过调整后重新开始。2,网络挖掘网络挖掘可分为网络用户行为挖掘与网络信息挖掘。前者基本不在工程咨询人员关心之列。后者可理解为“从WWW中发现和分析有用的信息”。网络信息挖掘是在已知数据样本的基础上,通过归纳学习、机器学习、统计分析等发现挖掘对象间的内在关系与特性,进而在网络中提取用户感兴趣的信息,获得更高层次的知识和规律。网络信息挖掘沿用了Robot,全文检索、人工智能的模式识别、
12、神经网络等技术。现在的搜索引擎使用了这些技术,能够在网页或网站数据库中为用户搜寻有用信息。网络信息挖掘具体步骤如下:(1)确立目标样本。由用户选择目标文本,提取特征信息。(2)提取特征信息。根据目标样本的词频分布,从统计词典中提取挖掘目标的特征向量并计算出相应的权值。(3)网络信息获取。先利用搜索引擎站点选择待采集站点,再利用Robot程序采集静态Web页面,最后获取被访问站点网络数据库中的动态信息,生成WWW资源索引库。(4)信息特征匹配。提取索引库中的源信息特征向量,并与目标样本的特征向量对照,将符合要求的信息交给用户。五、 数据分析与挖掘概述(一)信息分析信息分析是根据咨询问题的具体需要
13、,对与之有关的信息进行整理、鉴别、评价、分析和综合,以便取得咨询所需新信息的过程。信息分析有如下几种用途:1跟踪。所谓跟踪,就是及时了解各领域新动向、新发展,从而发现问题、提出问题。2比较。比较各种事物的内部矛盾之后,把握事物间的联系,认识事物的本质,从而提出问题、确定目标、拟定方案并作出选择。3预测。利用已掌握的信息、知识和手段,推断事物的未来或未知方面。4评价。进行评价时应选择合适的变量和评价指标,应当考虑评价对象之间的可比性。信息分析所用方法,可分为定性和定量分析两种。定性方法主要靠逻辑推理;而定量方法涉及数据间的数量关系,要建立数学模型,计算、求解。如今,信息越来越复杂,定性与定量分析
14、已无法单独奏效,只能越来越多地结合起来。(二)数据分析数据分析是信息分析的一部分,数据分析是对收集数据进行系统的分析,建立适当的模型,揭示数据中隐含的技术、经济、社会和其他关系,以及发展趋势,为有关的咨询活动提交的有用的数字、信息或建议。数据分析的对象可分为时间序列和截面数据。如企业历年的咨询收入、利润总额等就是时间序列。截面数据是在同一时间的数据,如企业同一年咨询业务数目、营业额、费用、收入、人工耗费等。两种数据都要注意样本容量大小。对于截面数据,常用线性或非线性回归模型体现数据之间的各种关系。数据分析属定量分析,包括数据统计分析、时间数据分析、空间数据分析。(三)数据挖掘数据挖掘就是从数据
15、中挖掘出隐含、先前未知、有潜在用途,最终可为人理解的关系、模式、趋势和其他有用信息,并建立模型,用于预测、判断或决策,帮助企业更好地适应变化并做出更明智的决策的过程。数据挖掘广泛应用于制造、金融、零售、保健、中医药及电信等行业的客户关系管理、风险防范、供应链管理、竞争优势分析、部门分析等领域。数据挖掘要用到统计分析、人工智能、数据库和神经网络等方面的知识,如记忆推理、聚类分析、关联分析、决策树、神经网络、基因算法等。数据挖掘需要用户参与,并非某种单一工具、技术或软件即可独自完成。另一方面,并非所有信息查询都可视为数据挖掘。例如,使用数据库管理系统查找个别记录,或用搜索引擎查找互联网特定的网页,
16、属于信息检索,不能视为数据挖掘。当然,数据挖掘技术也有强大的信息检索能力。六、 环境承载力影响因素识别及评价指标()水环境承载力水环境承载力是在一定经济社会和科学技术发展水平条件下,以生态、环境健康发展和社会经济可持续发展协调为前提,区域水环境系统能够支撑社会经济可持续发展的合理规模。主要影响因素包括水功能区划、海洋功能区划、近岸海域环境功能区划、保护目标及各功能区水质达标情况,主要水污染因子和特征污染因子、水环境控制单元主要污染物排放现状及允许排放量、环境质量改善目标要求,地表水控制断面位置及达标情况,主要水污染源分布和污染贡献率(包括工业、农业和生活污染源)等。主要评价指标包括万元工业增加
17、值废水排放量、工业废水达标排放率、污径比、主要水污染物排放强度等。(二)大气环境承载力大气环境承载力是在某一时期、某一区域,环境对人类活动所排放大气污染物的最大可能负荷的支撑阈值。主要影响因素包括大气环境功能区划、保护目标及各功能区环境空气质量达标情况,主要大气污染因子和特征污染因子、大气环境控制单元主要污染物排放现状及允许排放量、环境质量改善目标要求,主要大气污染源分布和污染贡献率(包括工业、农业和生活污染源)等。主要评价指标包括空气优良率和主要大气污染物排放强度等。(三)土壤环境承载力土壤环境承载力是在维持土壤环境系统功能结构不发生变化的前提下,其所能承受的人类作用在规模、强度和速度上的限
18、值。主要影响因素包括土壤主要理化特征,主要土壤污染因子和特征污染因子,土壤环境质量达标情况,土壤污染风险防控区及防控目标等。主要评价指标包括土壤环境质量达标率等。七、 资源环境承载力评价综合指标体系资源环境承载力评价是区域上各种因素对承载能力的综合体现,因而必然表现为各单一方面的资源、环境承载力作用效果的科学叠加,反映区域内资源环境承载力的总体状况。因此,资源环境承载力在综合评价指标是由上述的资源承载力、环境承载力和生态承载力等指标体系,根据评价对象功能要求和资源环境特征,选择相关指标构成的指标体系。该指标体系能够全面满足评价对象的资源环境承载力评价要求。在构建综合评价指标体系的时候,要注意几
19、个原则:一是要注重科学性和可对比性相统一的原则。资源环境承载力评价要严格按照资源环境的科学内涵,能够对资源环境的数量和质量作出合理的描述。同时评价方法要注重与国内外和区域间的可对比性,具有纵向、横向比较和可推广与应用。二是要注重描述性指标与评价性指标相统一原则。描述性指标即资源和环境两大系统的发展状态指标;评价性指标即评价各系统相互联系与协调程度的指标。二者的统一,将在时间上反映发展的速度和趋向,在空间上反映其整体布局和结构,在数量上反映其规模,在层次上反映功能和水平。三是要注重最大限制性和可操作性相结合原则。资源环境承载力是多种因素综合作用的结果,指标体系作为一个有机整体,不可能把所有的因素
20、都列出,客观上对资源环境承载力所有因素全部用指标描述出来也是不可能的。所以,指标体系要反映影响资源环境承载力主导因素的全貌,用对资源环境承载力产生最大限制性的主导因素的指标体系来描述和评价资源环境承载力,才能把握资源环境承载力最本质的、最基本的特征。同时,要达到指标体系的实用性和可操作性,避免以往在研究制定指标体系要么指标体系过于庞杂、无法操作,要么把握不了主要的因素,对资源环境承载力最本质的、最基本的特征缺乏全面反映、表征、度量。因此,研究和制定指标体系要注重最大限制性和可操作性相结合,根据水桶原理发挥决定性作用的指标有限,在选取最大限制性主导因素的前提下,尽量使指标少而精,资料易取得,方法
21、易掌握,而不必面面俱到,使最大限制性和可操作性相互统一,这样才能够有利于研究顺利进行。八、 弹性系数法弹性系数亦称弹性,弹性是一个相对量,它衡量某一变量的改变所引起的另一变量的相对变化。弹性总是针对两个变量而言的。例如,需求的价格弹性系数所考察的两个变量是某一特定商品的价格和需求量,而能源弹性则是考察经济总量指标与能源消费量之间的关系。一般来说,两个变量之间的关系越密切,相应的弹性值就越大;两个变量越是不相关,相应的弹性值就越小。而弹性分析方法处理经济问题的优点是简单易行,计算方便,计算成本低,需要的数据少,应用灵活广泛。但也存在某些缺点:一是其分析带有一定的局限性和片面性,计算弹性或作分析时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能 设备 项目 市场分析
限制150内