初一数学知识点归纳.pdf





《初一数学知识点归纳.pdf》由会员分享,可在线阅读,更多相关《初一数学知识点归纳.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,名师推荐!欢迎下载,祝您学习进步,成绩提升初一数学知识点总结初一数学知识点总结(初一上学期)(初一上学期)代数初步知识代数初步知识1、代数式1、代数式:用运算符号“ 数式。注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。2、列代数式的几个注意事项:2、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“ ” 乘,或省略不写。(2)数与数相乘,仍应使用“”乘,不用“ ”乘,也不能省略乘号。(3)数与字母相乘时,一般在结果中把数写在字母前面,如 a5 应写成 5a。(4
2、)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如 3a 写成形式;(5)a与 b 的差写作 a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做 a-b 和 b-a .3、几个重要的代数式:3、几个重要的代数式:(1)a 与 b 的平方差是:a -b ; a 与 b 差的平方是:(a-b) 。(2)若 a、b、c 是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。(3)若 m、n 是整数,则被 5 除商 m 余 n 的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1。(4)若 b0,则正数是:a +
3、b ,负数是:-a -b,非负数是:b ,非正数是:-b 。2222222”连接数及表示数的字母的式子称为代3的a有理数有理数1、有理数:1、有理数:(1)凡能写成b(a、b 都是整数且 a0)形式的数,都是有理数。正整数、0、负整数a统称整数;正分数、负分数统称分数;整数和分数统称有理数。(注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;p 不是有理数)(2)有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。精品文档,名师推荐!欢迎下载,祝您学习进步,成绩提升(3)自然数是指 0 和正整数;a0,
4、则 a 是正数;a0,则 a 是负数;a0 ,则 a 是正数或 0(即 a 是非负数);a0,则 a 是负数或 0(即 a 是非正数)。2、数轴:2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数:3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0。(2)注意:a-b+c 的相反数是-a+b-c;a-b 的相反数是 b-a;a+b 的相反数是-a-b;(3)相反数的和为 0 时,则 a+b=0;即 a、b 互为相反数。4、绝对值:4、绝对值:(1)正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数。(注意:绝对值的意义是
5、数轴上表示某数的点离开原点的距离)。(2)绝对值可表示为|a|。(3)|a|是重要的非负数,即|a|0。(注意:|a|b|=|ab|)。5、有理数比大小:5、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.6、互为倒数:6、互为倒数:乘积为 1 的两个数互为倒数。(注意:0没有倒数;若 a、b0,那么ba的倒数是;倒数是本身的数是1;若ab=1,ba则 a、b 互为倒数;若 ab=-1,则 a、b 互
6、为负倒数。7、有理数加法法则:7、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。(3)一个数与 0 相加,仍得这个数。8、有理数加法的运算律:8、有理数加法的运算律:(1)加法的交换律:a+b=b+a 。(2)加法的结合律:(a+b)+c=a+(b+c)。9、有理数减法法则:9、有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b)。10、有理数乘法法则10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘。精品文档,名师推荐!欢迎下载,祝您学习进步,成绩提升(
7、2)任何数同零相乘都得零。(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。11、有理数乘法的运算律:11、有理数乘法的运算律:(1)乘法的交换律:ab=ba。(2)乘法的结合律:(ab)c=a(bc)。(3)乘法的分配律:a(b+c)=ab+ac。12、有理数除法法则:12、有理数除法法则:除以一个数等于乘以这个数的倒数。(注意:零不能做除数)13、有理数乘方的法则:13、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数。注意:当 n 为正奇数时: (-a) =-a或(a -b) =-(b-a) , 当 n 为
8、正偶数时: (-a) =a14、乘方的定义:14、乘方的定义:(1)求相同因式积的运算,叫做乘方。(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。(3)a 是重要的非负数,即 a 0;若 a +|b|=0 ,则 a=0,b=0。(4)底数的小数点移动一位,平方数的小数点移动二位。15、科学记数法:15、科学记数法:把一个大于 10 的数记成 a10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法。16、近似数的精确位:16、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。17、有效数字:17、有效数字:从左边第一个不为零
9、的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。18、混合运算法则:18、混合运算法则:先乘方,后乘除,最后加减。注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。19、特殊值法:19、特殊值法:是用符合题目要求的数代入, 并验证题设成立而进行猜想的一种方法,但不能用于证明。222nnnnnn或 (a-b) =(b-a) 。nn整式的加减整式的加减精品文档,名师推荐!欢迎下载,祝您学习进步,成绩提升1、单项式:1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。2、单项式的系数与次数:2、单项式的系数与次数:单项式中
10、不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。3、多项式:3、多项式:几个单项式的和叫多项式。4、多项式的项数与次数:4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax +bx+c 和 x +px+q 是常见的两个二次三项式。5、整式:5、整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。6、同类项:6、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。7、合并同类项法则:
11、7、合并同类项法则:系数相加,字母与字母的指数不变。8、去(添)括号法则8、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。9、整式的加减:9、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。10、多项式的升幂和降幂排列:10、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。22一元一次方程一元一次方程1、等式与等量:1、等式与等量:用“=”号连接而成的式子叫
12、等式。注意:“等量就能代入”。2、等式的性质:2、等式的性质:等式性质 1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。等式性质 2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。3、方程:3、方程:含未知数的等式,叫方程。4、4、 方程的解:方程的解: 使等式左右两边相等的未知数的值叫方程的解; 注意: “方程的解就能代入”。5、移项:5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质 1。6、一元一次方程:6、一元一次方程:只含有一个未知数,并且未知数的次数是 1,并且含未知数项的系数不是零的整式方程是一元一次方程。7、一元一次方
13、程的标准形式:7、一元一次方程的标准形式: ax+b=0(x 是未知数,a、b 是已知数,且 a0)。8、一元一次方程的最简形式:8、一元一次方程的最简形式: ax=b(x 是未知数,a、b 是已知数,且 a0)。9、一元一次方程解法的一般步骤:9、一元一次方程解法的一般步骤:精品文档,名师推荐!欢迎下载,祝您学习进步,成绩提升整理方程 去分母 去括号 移项 合并同类项 系数化为 1 (检验方程的解)。10列一元一次方程解应用题:10列一元一次方程解应用题:(1)读题分析法:(1)读题分析法:多用于“和,差,倍,分问题”。仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,
14、为,完成,增加,减少,配套等”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。(2)画图分析法:(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。11、列方程解应用题的常用公式:11、列方程解应用题的常用公式:(1)行程问题:距离=速度时间(2)工程问题:工作量=工效工时(3)比率问题:部分=全体比率(4
15、)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价折;利润=售价-成本, ;(6)周长、面积、体积问题(6)周长、面积、体积问题:C:C圆圆=2R,S=2R,S圆圆=R=R ,C,C长方形长方形=2(a+b),S=2(a+b),S长方形长方形=ab,=ab, C C正方形正方形2 2=4a,=4a,2 22 22 23 32 22 2S S正方形正方形=a=a ,S,S环形环形=(R=(R -r-r ),V),V长方体长方体=abc=abc ,V,V正方体正方体=a=a ,V,V圆柱圆柱=R=R h h ,V,V圆锥圆锥= = RR h。h
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 知识点 归纳

限制150内