高二数学《导数》知识点总结-高二数学知识点总结.docx
《高二数学《导数》知识点总结-高二数学知识点总结.docx》由会员分享,可在线阅读,更多相关《高二数学《导数》知识点总结-高二数学知识点总结.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学导数知识点总结:高二数学知识点总结高二网权威发布高二数学导数学问点总结,更多高二数学导数学问点总结相关信息请访问高二网。世界一流潜能大师博恩•崔西说:“潜意识的力气比表意识大三万倍”。追逐高考,我们憧憬胜利,我们希望激发潜能,我们就须要在心中铸造一座高高耸立的、坚实无比的灯塔,它的名字叫信念。大范文网高二频道为你整理了高二数学导数学问点总结,助你一路向前!1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0)切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。3.常见函数的导数公
2、式:;。4.导数的四则运算法则:5.导数的应用:(1)利用导数推断函数的单调性:设函数在某个区间内可导,假如,那么为增函数;假如,那么为减函数;留意:假如已知为减函数求字母取值范围,那么不等式恒成立。(2)求极值的步骤:求导数;求方程的根;列表:检验在方程根的左右的符号,假如左正右负,那么函数在这个根处取得极大值;假如左负右正,那么函数在这个根处取得微小值;(3)求可导函数最大值与最小值的步骤:求的根;把根与区间端点函数值比较,最大的为最大值,最小的是最小值。导数与物理,几何,代数关系亲密:在几何中可求切线;在代数中可求瞬时改变率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学
3、导数的定义学问点归纳吧!导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量x时,函数输出值的增量y与自变量增量x的比值在x趋于0时的极限a假如存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点旁边的改变率。假如函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性靠近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是全部的函数都有导数,一个函数也不肯定在全部的点上都有导数。若某函数在
4、某一点导数存在,则称其在这一点可导,否则称为不行导。然而,可导的函数肯定连续;不连续的函数肯定不行导。对于可导的函数f(x),x↦f(x)也是一个函数,称作f(x)的导函数。找寻已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明白求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量x,(x0+x)也在该邻域内时,相应地函数取得增量y
5、=f(x0+x)-f(x0);假如y与x之比当x0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f(x0),也记作yx=x0或dy/dxx=x0一、求导数的方法(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即二、关于极限.1.数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:2函数的极限:当自变量x无限趋近于常数时,假如函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 数学 知识点 总结
限制150内