煤油换热器.docx
《煤油换热器.docx》由会员分享,可在线阅读,更多相关《煤油换热器.docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、煤油换热器材料工程原理B课程设计设计题目: 煤油换热器专 业: 班 级: 学 号: 姓 名: 日 期: 指导教师: 设计成绩: 日 期: 板式换热器设计任务书(一).设计题目 煤油换热器的设计(二)原始数据及操作条件1.处理能力 7×104吨/年煤油2.设备型式 锯齿形板式换热器 3.操作条件 (1)煤油:入口温度100,出口温度40 (2)冷却介质:循环水,入口温度30,出口温度 50 (3)允许压强降:不大于5×105Pa (4)煤油定性温度下的物性数据:密度为825/m3,粘度为8.66×10-4Pa·s,比热容为2.22Kj/(·),导
2、热系数为0.14W/(m·)。 (5)每年按330天计,每天24小时连续运行(三)设计项目 选择适宜的锯齿形式板式换热器并进行核算。目 录第一章、板式换热器的结构特点和分析-51.1、板式换热器的结构分析-5 1.1.1板式换热器与管壳式换热器的比较-51.1.2板式换热器的结构技术特点-6 1.2、板式换热器流程工作原理-7 1.2.1 流程组合的介绍-7第二章、板式换热器的优缺点及实际应用-82.1、板式换热器的优缺点-82.2.1板式换热器的特点-82.2.2板式换热器的缺点-92.2、板式换热器的实际应用-92.2.1板式换热器在制冷中的应用-9第三章、板式换热器的选型及优化
3、设计-11 3.1、板式换热器选型应注意的问题-11 3.1.1 板型的选择-11 3.1.2 流程和流道的选择-11 3.2、板式换热器设计的优化设计-11 3.2.1 板式换热器的优化方法-11 3.2.2 降低换热器阻力的方法-13 3.2.3 合理选用板片材质-14第四章、板式换热器的设计计算-15 4.1、设计条件-15 4.2、确定物性数据-15 4.3、换热器的设计计算过程-16 4.3.1 计算热负荷-16 4.3.2 计算平均温差(按逆流计算)-16 4.3.3 初步估算换热面积与板型-16 4.3.4 核算总传热系数K-17 4.3.5 估算传热面积-18 4.3.6 计算
4、压力降-18第五章、辅助设备的选择及计算-19 5.1、泵的选择-19 5.1.1 对壳程煤油所需的泵进行计算选择-21 5.1.2 对管程循环水所需的泵进行计算选择-21附录 工艺流程简图及说明 -21 换热器参数表 -22辅助设备参数表-22装配图-23参考文献-24设计小结-25第一章 板式换热器的结构特点和分析1.1、板式换热器的结构分析板式换热器主要由框架和板片两大部分组成。板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。板片的周边及角孔处用橡胶垫片加以密封。框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构成。板式换热
5、器是将板片以叠加的形式装在固定压紧板、活动压紧板中间,然后用夹紧螺栓夹紧而成。1.1.1板式换热器与管壳式换热器的比较(1)传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50200)下产生紊流,所以传热系数高,一般认为是管壳式的35倍。(2)对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可
6、低于1,而管壳式换热器一般为5.(3)占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的25倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/51/10。(4)容易改变换热面积或流程组合,只要增加或减少几张板,即可达到增加或减少换热面积的目的;改变板片排列或更换几张板片,即可达到所要求的流程组合,适应新的换热工况,而管壳式换热器的传热面积几乎不可能增加。(5)重量轻板式换热器的板片厚度仅为0.40.8mm,而管壳式换热器的换热管的厚度为2.02.5mm,管壳式的壳体比板式换热器的框架重得多,板式换热器一般只有管壳式重量的1/5
7、左右。(6) 价格低采用相同材料,在相同换热面积下,板式换热器价格比管壳式约低40%60%。(7) 制作方便板式换热器的传热板是采用冲压加工,标准化程度高,并可大批生产,管壳式换热器一般采用手工制作。(8) 容易清洗框架式板式换热器只要松动压紧螺栓,即可松开板束,卸下板片进行机械清洗,这对需要经常清洗设备的换热过程十分方便。(9) 热损失小板式换热器只有传热板的外壳板暴露在大气中,因此散热损失可以忽略不计,也不需要保温措施。而管壳式换热器热损失大,需要隔热层。(10)容量较小是管壳式换热器的10%20%。(11)单位长度的压力损失大由于传热面之间的间隙较小,传热面上有凹凸,因此比传统的光滑管的
8、压力损失大。1.1.2板式换热器的结构技术特点板式换热器是由传热板片、密封垫片、压紧板、上下导杆、支柱、夹紧螺栓等主要零件组成。传热板片四个角开有角孔并镶贴密封垫片,设备夹紧时,密封垫片按流程组合形式将各传热板片密封连接,角孔处互相连通,形成迷宫式的介质通道,使换热介质在相邻的通道内逆向流动,经强化热辐射、热对流、热传导进行充分的热交换。由于传热片特殊的结构,装配后在较低的流速下(Re=200)就能激起强烈的湍流,因而加快了流体边界层的破坏,强化了传热过程。板式换热器工作压力一般为0.3MPa1.6 Mpa,工作温度一般低于160。用于水蒸汽加热或冷凝时,一般在板式换热器上附加减温管式换热器,
9、来降温保护板式换热器的垫片,并增加蒸汽处理量。1.2、板式换热器流程工作原理板式换热器由于板片波纹表面的特殊作用,使流体沿着狭窄弯曲的通道流动其速度的大小方向不断的改变,致使流体在不大的流速下( Rc=200 时),激起了强烈端动,因而加快了流体边界层的破坏,强化了传热过程,有效地提高了传热能力。 并使其具有结构紧凑、金属耗量低、操作灵活性大、热损失小、安装、检查拆洗方便、耐腐性强、使用寿命长等突出优点。换热器的流程是由许多板片按一定工艺及需方技术工作要求组装而成的。 组装时 A 板和 B 板交替排列,板片间形成网状通道四个角孔形成分配管和汇合管,密封垫把冷热介质密封在换热器里,同时又合理的将
10、冷热介质分开而不致混合。在通道里面冷热流体间隔流动,可以逆流也可以顺流,在流动过程中冷热流体通过板壁进行热交换。板式换热器的流程组合形式很多,都是采用不同的换向板片和不同组装来实现的,流程组合形式可分为单流程,多流程和汽液交换流程,混合流程形式。要根据工艺条件来选择换热器的流程组合。1.2.1流程组合的介绍为了使流体在板束之间按一定的要求流动,所有板片的四角均按要求冲孔,垫片按要求粘贴,然后有规律地排列起来,形成流体的通道,称为流程组合(图(a)图(b)图(c))。流程组合的表示方式为: (式1.1)式中:m1,m2,n1,n2表示程数;a1,a2,b1,b2表示每程流道数;原则上规定分子上为
11、热流体流程,分母上为冷流体流程。串联流程并联流程混合流程第二章 板式换热器的优缺点及实际应用2.1、板式换热器的优缺点2.1.1板式换热器的特点(1) 换热效率高,热损失小 在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在30004000 W/ m2K左右,是管壳式换热器的35倍。设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 31/ 4。(2) 占地面积小重量轻 除设备本身体积外, 不需要预留额外的检修和安装空间。换热所用板片的厚度仅为0. 6
12、0. 8mm。同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。(3) 污垢系数低 流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。(4) 检修、清洗方便 换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。(5) 产品适用面广 设备最高耐温可达180 , 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。各类材料的换热板片也可适应工况对腐蚀性的要求。2.1.2
13、板式换热器的缺点(1)允许操作压力较低,最高不超过1961kPa,否则容易渗漏。(2)操作温度不能太高,因为垫片耐热性能的限制,如对合成橡胶垫圈不高于130,对压缩石棉垫圈也应低于250。(3)处理量不大,因板间距小,流道截面较小,流速亦不能过大。板式换热器缺点是密封周边较长,容易泄漏,使用温度只能低于150,承受压差较小,处理量较小,一旦发现板片结垢必须拆开清洗。2.2、板式换热器的实际应用2.2.1板式换热器在制冷中的应用在制冷技术中,换热器是不可缺少的制冷设备,冷凝器、蒸发器、回热器以及中间冷却器等换热设备,不仅在重量、体积和金属耗量上占整个制冷装置的50%以上,而且对制冷性能也会产生重
14、大影响。因此强化制冷换热器的传热,减少重量和体积,降低金属消耗量一直是制冷技术中的发展方向,现已出现了一种新型的、全焊接式的板式换热器在制冷技术中的应用,并且表现出强劲的发展潜力。与制冷用壳程管式换热器相比,除了具有板式换热器的一般特点,制冷用板式换热器还具有如下特点。(1)制冷剂充灌量小,有利于环境保护和降低运行成本。壳管式换热器的壳侧和管侧的容积都很大,要使制冷系统正常工作,必须充灌大量的制冷剂,而且还可能造成环境污染。而板式换热器一方面体积小,另一方面间距尺寸也小。(2)冻结倾向少,抗冻性能高。由于水在低流速时,就能在板式换热器中形成高度紊流,温度分布非常均匀,从而减少了冷冻水的冻结倾向
15、。即使发生了冻结,也更能承受冻结所产生的压力,而不像壳管式换热器那样容易使热管胀裂,并且可以在结冻后继续使用。(3)蒸发彻底,经济性高。制冷剂在制冷板式换热器中蒸发时,很容易实现完全蒸发达到无液态程度,因此在大多数情况下,制冷系统无须设置气液分离器。并且极易实现单元化,安装简单方便,维护和运输都可以节约费用,降低成本。由于与传统的壳管式换热器相比,制冷用板式换热器具有十分明显的发展优势,自上世纪70年代开始在制冷装置中得到应用以来,已经日益受到人们的重视,特别是许多发达国家,如欧洲、美国、日本、澳大利亚等都非常重视制冷用板式换热器的研究和应用。日本在上世纪80年代开始研究制冷用板式换热器,并在
16、制冷装置中使用,收到了良好的经济效益,世界上一些著名的制冷公司如约克、开利、日立等也相继在制冷装置中采用板式换热器。进入20世纪90年代后,制冷用板式换热器又得到进一步发展,一种能够应用于氨制冷系统的板式换热器在瑞典斯特尔公司研制成功。这种新型的组合式板式换热器结合了板框式和钎焊式的特点。与氟利昂制冷系统相比,采用这种板式换热器的氨制冷系统不仅在机组材料、体积重量上有明显的优势,而且性能系数也要高10%20%。目前,这种系统已经形成了8个产品,冷量从10kw1000kw。氨用板式换热器的开发成功,不仅拓宽了板式换热器在制冷技术中的应用范围,而且对保护大气臭氧、保护环境都有重要意义,同时也必将促
17、进制冷技术的进一步发展。我国自上世纪60年代初开始生产板式换热器,到1994年,以节能型产品定点的板式换热器生产厂家即达15家,并且一些厂家还进行板式蒸发器及其传热特性的研究工作,然而这些厂家也仅限于生产板框式换热器(DHE)。在我国,制冷用板式换热器的应用尚处于起步阶段,日前许多制冷厂家都在自己的产品中采用了制冷用板式换热器,而且其产品广泛的受到用户青睐。可以预计,随着对制冷用板式换热器的了解和认识,板式换热器以其高效传热,结构紧凑,节能节材并具环保功能等特点,必将越来越广泛地应用于制冷装置。第三章 板式换热器的选型及优化3.1、板式换热器选型应注意的问题3.1.1板型的选择板片型式或波纹式
18、应根据换热场合的实际需要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。3.1.2流程和流道的选择流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,
19、从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。3.2. 板式换热器的优化设计方向3.2.1板式换热器的优化方法(1)提高传热效率板式换热器是问壁传热式换热器,冷热流体通过换热器板片传热,流体与板片直接接触,传热方式为热传导和对流传热。提高板式换热器传热效率的关键是提高传热系数和对数平均温差。提高换热器传热系数只有同时提高板片冷热两侧的表面传热系数,减小污垢层热阻,选用热导率高的板片,减小板片的厚度,才能有效提高换热器的传热系数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 煤油 换热器
限制150内