专用汽车项目统计过程质量控制【参考】.docx
《专用汽车项目统计过程质量控制【参考】.docx》由会员分享,可在线阅读,更多相关《专用汽车项目统计过程质量控制【参考】.docx(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专用汽车项目统计过程质量控制xx有限公司目录一、 控制图应用的程序4二、 控制图的基本原理6三、 过程能力10四、 过程能力的计算和评价11五、 质量数据与分布规律13六、 过程质量控制的特点16七、 质量信息管理22八、 计量工作30九、 质量战略37十、 质量文化39十一、 产品及相关术语44十二、 质量特性49十三、 产业环境分析54十四、 必要性分析56十五、 项目基本情况56十六、 进度规划方案59项目实施进度计划一览表59十七、 投资计划方案60建设投资估算表62建设期利息估算表63流动资金估算表64总投资及构成一览表66项目投资计划与资金筹措一览表67一、 控制图应用的程序应用控
2、制图的主要目的是发现过程或工序异常点,追查原因并加以消除,使过程或工序保持受控状态;对过程或工序的质量特性数据进行时间序列分析,以掌握过程或工序状态。因此,在进入控制图应用程序之前,根据统计过程质量控制的目的确定控制图的类型,然后,进入控制图应用的一般程序。1、控制图应用的一般程序(1)选取控制的质量特性与预备数据。控制的质量特性就是选出符合统计过程质量控制,运用目的、可控、易于评价的质量特性或项目,如对产品的使用效果有重大影响的质量特性,对下道工序的加工质量关系重大的质量特性,生产过程中波动大的质量特性,等等。随机收集能反映出质量特性的一组数据,即预备数据。预备数据是用来绘制控制图的数据。(
3、2)计算统计量。不同种类的控制图所需要的统计量各不相同,应根据所选取的控制图种类的统计变量的规定对预备数据进行统计计算。(3)计算控制界限。不同图种的控制图,其控制界限的计算公式各不相同。但都需要计算CL,UCL,LCL,计算公式根据统计量的分布特征值及相互关系推导而得。(4)绘制分析用控制图。根据计算的控制界限数值,在控制图纵坐标轴上刻度,并画出CL,UCL、LCL.三条界限。控制图横坐标轴的刻度为样本号。按数据表中各组数据的统计量值在控制图中打点并用直线线段连接为折线,即为分析用控制图。分析用控制图是在对过程的稳定性或受控状态没有明确结论时绘制的控制图,主要目的是判断过程是否处于稳定状态或
4、受控状态。(5)过程稳定与否和异常与否的判断。作为分析用控制图的完结,依据判断规则的各项准则,对分析用控制图中点子分布状况进行判断。若分析用控制图中点子的分布没有任何违背判断准则的情况,即可判断出取样过程处于稳定受控状态,无异常原因发生。(6)计算过程能力是否达到基本要求,过程是处于稳定或受控状态下,计算过程能力是否达到基本要求,也可以用分析用控制图中的数据作直方图判断。(7)确定控制标准。确定控制标准是对控制用控制图的要求。利用分析用控制图的判断,如若过程稳定无异常发生,且过程能力指数满足技术要求,可将分析用控制图的控制界限延长,作为标准,此时分析用控制图转化为控制用控制图,以对日常过程或工
5、序控制进行监管。如若过程不稳定,有异常发生,或过程能力指数不能满足技术要求,要对分析用控制图进行修正。修正时,如若组数能满足要求,可剔除不合理数据,重新得到控制界限。如若组数不能满足要求,要重新搜集数据。进行日常工序质量控制。在日常生产活动中,随机间隔取样,进行测量和计算,在图上描点、观察分析、判断工序状态。如果无异常现象,则维持现状进行生产,如果出现质量降低的信息,应采取措施消除异常;如果出现质量提高的信息,应总结经验,进行标准化或制度化。2、计量值控制图:均值一极差控制图的绘制均值极差控制图是均值控制图和极差控制图联合使用的一种控制图,前者用于判断生产过程是否处于或保持在所要求的受控状态,
6、后者用于判断生产过程的标准差是否处于或保持在所要求的受控状态。二、 控制图的基本原理数据或质量特性值处理的方法中,不论是频数分布表、直方图、分布的计量值、分布规律及过程能力指数等所表示的都是数据在某一段时间内的静止状态。但是,生产过程中,用静态的方法不能随时发现问题以调整生产或工作。因此,生产过程或工作现场不仅需要处理数据的静态方法,也需要能了解数据随时间变化的动态方法,并以此为依据来控制产品生产过程或工作的质量。1、控制图的基本概念控制图是对测定、记录、评估和监察过程是否处于统计控制状态的一种统计方法设计图。世界上第一张控制图是美国休哈特在1924年5月16日提出的不合格品率(P)控制图。(
7、1)控制图的设计原理。正态性假设。3准则。小概率事件原理。小概率事件原理是指小概率的事件一般不会发生。由3准则可知,数据点落在控制界限以外的概率只有0.135%,因此,生产过程正常情况下,质量特性值是不会超过控制界限的,如果超出,则认为生产过程发生异常变化。(2)控制图应用经验与理论分析表明,当生产过程中只存在正常波动时,产品或过程质量将形成典型分布,若过程正常,即分布不变,则出现点子超过UCL或LCL的概率只有0.135%左右。若过程异常,分布曲线上移或下移,产品或过程质量的分布必将偏离原来的典型分布,即,发生变化。发生这种情况的可能性很大,其概率可能为0.135%的几十至几百倍。小概率事件
8、在一次试验中几乎不可能发生,若发生即判断异常。因此,根据典型分布是否偏离就能判断异常波动是否发生,而典型分布的偏离可由控制图检出,所以,控制图上的控制界限就是区分正常波动和异常波动的科学界限,亦可分析偶然因素与异常因素对过程的影响。2、控制图的基本种类(1)常规控制图的分类。常规控制图是按产品质量的特性及其分布规律所作的分类。均值极差控制图。均值标准差控制图。中位数极差控制图。单值移动极差控制图。不合格品率控制图。不合格品数控制图。缺陷数控制图。单位缺陷数控制图。(2)按控制图的用途划分。按控制图的用途来划分,可以分为分析用控制图和控制用控制图。实施SPC分为两个阶段,一是分析阶段,二是监控阶
9、段。在这两个阶段所使用的控制图分别被称为分析用控制图和控制用控制图。两者间的关系适应日本质量管理的名言:“始于控制图,终于控制图。”所谓“始于控制图”是指对过程的分析从应用控制图对过程进行分析开始,所谓“终于控制图”是指对过程的分析结束,最终建立了控制用控制图。故根据使用的目的和用途的不同,控制图可分为分析用控制图与控制用控制图。分析用控制图。分析用控制图是根据过去数据,主要用于分析现状,涉及分析两个方面的内容,一是所分析的过程是否处于统计控制状态,二是该过程的过程能力指数是否满足要求,若经过分析后,生产过程处于非统计控制状态,则应查找原因并加以消除。控制用控制图。控制用控制图由分析控制图转化
10、而来,当过程达到了确认的状态后,才能将分析用控制图的控制线延长作为控制用控制图。由于后者相当于生产中的立法,故由前者转为后者时应有正式交接手续。这里要用到判断稳态的准则(简称判断准则),在稳定之前还要用到判断异常的准则。进入日常管理后,关键是保持所确定的状态。经过一个阶段的使用后,可能又会出现异常,这时应查出原因,采取必要措施,加以消除,以恢复统计控制状态。3、控制图的界限公式对于常规控制图的控制界限计算公式,世界上各个国家都有相应的标准。中华人民共和国国家标准常规控制图(GB/T40912001),等同于国际标准休哈特控制图(ISO8258:1991)及其1993年的修订本。(1)常规计量控
11、制图的界限公式。(2)常规计数控制图的界限公式。计数控制图是通过记录所考察的样本中每个个体是否具有某种特性(或特征),如合格与不合格;合格率与不合格率;缺陷与单位缺陷等某种事件所发生的次数对过程进行监控的控制图。三、 过程能力1、过程能力过程能力(PC)是指过程(或工序)处于稳定状态下的实际加工能力,它是衡量工序质量的一种标志,又叫工序能力,在机械加工业中又叫加工精度。SPC的基准就是统计控制状态或称稳态。过程能力反映了稳态下该过程本身所表现的最佳性能(分布宽度最小)。因此,在稳态下,过程的性能是可预测的,过程能力也是可评价的。离开稳态这个基准,对过程就无法预测,也就无法评价。过程能力决定于由
12、偶然因素造成的标准差。通常用6倍标准差(六西格玛)表示过程能力,它的数值越小越好。2、过程能力指数过程能力指数,简称Cp或Cpk,以往称为工序能力指数,现在则统一称为过程能力指数。Cp是用于反映过程处于正常状态时,即人员、机器、原材料、工艺方法、测量和环境(5MIE)充分标准化并处于稳定状态时,所表现出的保证产品质量的能力。过程能力是表示生产过程客观存在着分散的一个参数。但是这个参数能否满足产品的技术规格要求,仅从它本身还难以看出。因此,还需要另一个参数来反映工序能力满足产品技术要求(公差、规格等质量标准)的程度。这个参数就叫做过程能力指数,也称为工序能力指数或工艺能力指数。它是技术规格要求和
13、工序能力的比值。四、 过程能力的计算和评价(一)过程能力的计算当生产过程处于稳定状态时,一定的工序能力指数与一定的不合格品率相对应。根据所采用数据类型的不同和技术要求的不同,工序能力指数和不合格概率的计算又可以分为四种情况。(二)过程能力评价过程能力指数客观且定量地反映了过程能力满足质量标准的程度。它与生产过程中的加工能力和管理水平有关。过程能力指数越大,产品的加工质量就越高。因此,在实际生产中,根据过程能力指数的大小对过程的加工能力进行分析和评价,以便于采取必要的措施,既要保证过程质量,又要使成本适宜。1、无偏状态下过程能力评价一般情况下,无偏状态是指过程中心与质量标准公差中心重合。(1)特
14、等一过程能力过于充裕。在过程或工序允许的情况下,可考虑放宽管理或降低成本,可放宽检查,如人和设备的配备可相对降低一些,这样可以带来降低成本、提高效率的效果;提高产品的原设计精度,改进产品性能;加大抽样间隔,减少抽验件数,降低检验的各种消耗。(2)1等过程能力充裕。按过程进行管理,正常运转;非重要过程或工序可允许小的外来波动;对不重要的过程或工序可放宽检查,工序控制抽样间隔可放宽。(3)2等过程能力尚可。必须加强对生产过程的监控,防止外来波动;调查4MIE因素,作必要改进;严格执行各种规范、标准、制度;坚持合理的抽样方案和检验规程。(4)3等一过程能力不足。必须采取措施提高过程或工序能力,通过因
15、果图、排列图找出需要改进的因素;分析质量标准是否脱离实际,应实事求是地修正质量指标过严的情况;加强质量检验工作。(5)4等一过程能力严重不足。立即追查原因,采取紧急措施,提高工序能力,对4MIE必须进行根本性的改革,要从根本上消除影响质量的关键因素。2、有偏状态下过程能力评价一般情况下,有偏状态是指过程分布中心与质量标准公差中心不重合,出现了偏移。从统计的角度看有偏状态,中心偏移使得过程分布中心值不在目标值上,偏移量的出现使得过程能力指数Cp降低,过程输出的不合格品率增加。五、 质量数据与分布规律1、质量数据的基本概念定量分析是现代质量管理中的基本特征之一。为了进行定量分析,就必须有数据。因此
16、,在质量管理中要特别重视对数据的搜集、整理和分析工作。质量数据是指某质量指标的质量特性值,在质量控制过程中,将检测和分析得到的质量特性值用数字记录下来,简称质量数据。由于质量一词含义丰富,既包括狭义的产品质量,也包括广义的工作质量,因而质量指标在企业中就多种多样,质量数据在企业中几乎无处不在。在质量数据统计分析中,从样本到总体的问题,即统计推断问题。所谓统计推断,就是根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。因此,特别关注三项指标,一是数据的集中位置,二是数据的分散程度,三是数据的分布规律。质量数据是指由个体产品质量特性值组成的样本(总体)的质量数据集,在统计上称为
17、变量;个体产品质量特性值称变量值,根据质量数据的特点,可以将其分为计量值数据和计数值数据。(1)计量值数据。计量值数据是指可以连续取值的数据,属于连续型变量。其特点是在任意两个数值之间都可以取精度较高一级的数值。它通常可以用仪器测量的连续性数据,如长度、重量、强度、时间、标高、位移等。(2)计数值数据。计数值数据是指不能连续取值的,只能用自然数表示的数据,属于离散型变量。如合格品件数、废品数、错字数、质量缺陷点数等。计数值数据还可进一步划分为计件值数据和计点值数据。计件值数据是指按产品个数计数的数据,如合格品件数、废品件数等;计点值数据是指按点计数的数据,如缺陷、棉布上的疵点数、铸件上的砂眼数
18、等。计数值是指具有离散分布性的数据。2、质量数据的统计特征值应用统计过程质量控制,其基本的做法就是用有限的样本去分析推断总体的特征。过程的质量特性值是不断波动的。当搜集到的数据足够多时,就会发现一个现象,即所有数据都在一定范围内分散在一个中心值周围,越靠近中心值,数据越多;越偏离中心值,数据越少。这意味着数据的分散是有规律的,表现为数据的集中性。数据的分散性和集中性统称为数据的“统计规律性”。质量数据的集中趋势和离散程度反映了总体质量变化的内在规律性。(1)质量数据的位置特征值。在分析质量数据的分布状态时,描述数据分布集中趋势主要有算术平均值、中位数等。(2)数据的离散特征数。数据的分散程度在
19、质量管理中就是质量特性值的波动性,反映过程能力。在分析数据的分布状态时,常被用于表示数据分布的离散程度的特征数,主要有极差、标准偏差等。3、质量数据的分布规律质量数据具有个体数值的波动性和总体分布的规律性。在统计过程质量控制中,各种统计技术的应用都是以质量数据的分布规律为依据进行的,其中最常用的有正态分布、二项式分布和泊松分布。(1)正态分布。正态分布是一种最常见的连续性随机变量的概率分布。其特征是“钟”形曲线。实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同范围内正态曲线下的面积可用公式计算。轴与正态曲线之间的面积恒等于1
20、。(2)二项分布。二项分布是一种典型的离散性分布。(3)泊松分布。泊松分布P(A)中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如,某电话交换台收到的呼叫来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白细胞等,以固定的平均瞬时速率入(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。六、 过程质量控制的特点1、统计过程质量控制的基本概念所谓控制是要以某个标准为基准,一旦偏离了这个基准,就要尽快加以纠正,使之保持这个基准。SPC(统计过程控制)就是以统计控制状态(稳态)作为
21、基准的,这是一个非常重要的基本概念。统计控制状态也称稳态,即过程中只有正常因素(随机因素)而无异常因素(系统因素)产生的变异的状态。影响质量变异的原因包含正常因素(随机因素)和异常因素(系统因素)两大类。正常因素的特点表现为:对质量变异的影响是微小的;在过程中是始终存在的;对质量变异的影响方向是不确定的。由正常因素所造成的质量变异称为正常质量波动,鉴于正常质量波动的原因难以查明、难以消除,所以常采取持续改进的方法。异常因素的特点表现为:对质量变异的影响很大;在过程中时有时无;对质量变异的影响方向是确定的;异常因素是可以控制的(可以查明、可以消除)。由于异常因素所造成的质量变异、质量波动,其原因
22、可以查明、可以消除,所以采取的态度应该是“严加控制”。正常质量波动表现出质量数据形成典型分布(在确定的生产条件下,质量数据的分布中心和标准偏差表现为确定的值)。异常质量波动表现出质量数据的典型分布遭到破坏,即质量数据的分布中心和标准偏差发生显著的变化。统计过程控制就是要保持过程中只有正常因素起作用,控制异常因素的作用,使过程处于稳定受控状态。为了实现过程控制,必须采用科学的质量控制方法,如统计技术中分布状态、控制图,来捕捉过程中的异常先兆,并结合专业技术消除异常的质量波动。也就是说,统计过程控制是通过应用统计技术识别异常、消除异常,把不合格原因消灭于过程之中,达到预防不合格品产生的目的。2、统
23、计过程质量控制的步骤质量控制大致可以分为7个步骤。(1)选择控制对象。(2)选择需要监测的质量特性值。(3)确定规格标准,详细说明质量特性。(4)选定能准确测量该特性值的监测仪表,或自制测试手段。(5)进行实际测试并做好数据记录。(6)分析实际与规格之间存在差异的原因。(7)采取相应的纠正措施。当采取相应的纠正措施后,仍然要对过程进行监测,将过程保持在新的控制水准上。一旦出现新的影响因子,还需要测量数据,分析原因,进行纠正,因此这7个步骤形成了一个封闭式流程,称为“反馈环”。这点和六西格玛质量突破模式的DMAIC有共通之处。质量控制技术包括两大类:抽样检验和过程质量控制。抽样检验通常是指生产前
24、对原材料的检验或生产后对成品的检验,根据随机样本的质量检验结果决定是否接受该批原材料或产品,过程质量控制是指对生产过程中的产品随机样本进行检验,以判断该过程是否在预定标准内生产。抽样检验用于检验与评价,而过程质量控制应用于各种形式的生产过程。因此,所谓统计过程质量控制,是利用数理统计的方法,对生产过程的各个阶段进行控制。从而达到改进与保证产品质量的目的。SPC强调全过程预防为主的思想。SPC不仅可用于制造过程,而且还可以用于服务过程,以改进和保证服务质量。SPC强调全员参加,人人有责,强调采用科学的方法来达到目的。3、SPC的特点许多质量管理技术是对已生产出来的产品进行分析、检验或评估,以找出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 参考 专用汽车 项目 统计 过程 质量 控制
限制150内