水产加工产品项目质量管理手册.docx
《水产加工产品项目质量管理手册.docx》由会员分享,可在线阅读,更多相关《水产加工产品项目质量管理手册.docx(96页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、水产加工产品项目质量管理手册目录一、 产业环境分析3二、 优化产业结构3三、 必要性分析5四、 控制图的基本原理5五、 控制图的观察与分析9六、 过程能力11七、 过程能力的计算和评价12八、 质量数据与分布规律14九、 过程质量控制的特点17十、 服务质量差距模型23十一、 服务接触系统29十二、 服务与服务业38十三、 服务质量要素49十四、 质量职能56十五、 质量形成的过程59十六、 采购供应的质量职能62十七、 采购供应的质量管理66十八、 公司概况76公司合并资产负债表主要数据76公司合并利润表主要数据77十九、 投资计划77建设投资估算表79建设期利息估算表80流动资金估算表81
2、总投资及构成一览表82项目投资计划与资金筹措一览表84二十、 项目实施进度计划84项目实施进度计划一览表85二十一、 项目经济效益86营业收入、税金及附加和增值税估算表86综合总成本费用估算表88利润及利润分配表90项目投资现金流量表92借款还本付息计划表94一、 产业环境分析一年来,砥砺奋进、踊跃争先,区域实现地区生产总值xx亿元,增长xx%,总量迈入全国前xx强;一般公共预算收入xx亿元,增长xx%;城乡居民人均可支配收入xx元、xx元,分别增长xx%和xx%。地区生产总值、城乡居民收入等xx项主要指标增速位居区域前三,呈现了稳中有进、逆势上扬的良好态势。区域经济社会发展的主要预期目标是:
3、地区生产总值增长xx%左右;一般公共预算收入增长xx%左右,规上工业增加值增长xx%左右;城乡居民人均可支配收入分别增长xx%左右、xx%左右,收入比力争缩小到xx:xx;R&D经费投入强度达到xx%,全员劳动生产率提高xx%以上,节能减排降碳指标完成目标任务。二、 优化产业结构持续推进农产品产地初加工。在“一村一品”村镇、农业产业强镇,引导种养大户、家庭农场、专业合作社和龙头企业等建设加工设施,发展农产品产地初加工,提升产地初加工率,减少产后贮运损失。水稻、油菜籽及小麦等耐储农产品,在江汉平原、鄂东、鄂东南、鄂中北等主产区,重点发展烘干、脱壳、去杂、磨制、压榨、储藏等初加工。果蔬、畜禽及水产
4、等鲜活农产品,在优势特色果蔬产区、江汉平原养殖区域,重点发展预冷、保鲜、冷冻、清洗、分级、屠宰、分割等商品化处理,干制、腌制、灌制、熟制等初加工。中药材、茶叶等特色农产品,在武陵山、秦巴山、大别山、幕阜山等山区,重点发展分级、干制、切割、粉碎、包装等初加工。大力发展农产品精深加工。以全省10个主导产业为重点,以龙头企业为主体,加快生物、工程、环保、信息等技术集成应用,发展传统食品制造、营养与健康产品创制等。引导稻米、小麦、油料等粮油适度加工,减少因过度加工造成营养流失和资源浪费。发展精细加工,引导稻米、小麦、水果等加工原料专用化,推进冷冻干燥、非热非油加工、清洁与节能生产、智能控制、形态识别、
5、自动分选等技术应用与升级,开发品种多样、营养健康、方便快捷的产品。发展深度加工,以稻米、油料、淡水鱼、果蔬、茶叶、中药材等为重点,利用超临界萃取、超微粉碎、生物发酵、蛋白质改性等技术,提取营养因子、活性物质和功能成分,开发营养均衡、功能强化的健康食品,以及质优价廉、物美实用的非食用加工产品。全面推进副产物综合利用。鼓励龙头企业和加工园区推进农产品副产物循环利用、高值化利用、梯次利用,实现资源零废弃、变废为宝。采取先进的提取、分离与制备技术,重点推进稻米、小麦、油料、果蔬、畜禽、水产等副产物综合利用,包括稻壳、米糠、麦麸、胚芽、玉米芯、饼粕、油脚、果蔬皮渣、菜叶菜帮、菌柄、畜禽皮毛骨血、水产壳皮
6、骨内脏等,开发新产品、新材料、新能源等,提升增值空间。三、 必要性分析1、现有产能已无法满足公司业务发展需求作为行业的领先企业,公司已建立良好的品牌形象和较高的市场知名度,产品销售形势良好,产销率超过 100%。预计未来几年公司的销售规模仍将保持快速增长。随着业务发展,公司现有厂房、设备资源已不能满足不断增长的市场需求。公司通过优化生产流程、强化管理等手段,不断挖掘产能潜力,但仍难以从根本上缓解产能不足问题。通过本次项目的建设,公司将有效克服产能不足对公司发展的制约,为公司把握市场机遇奠定基础。2、公司产品结构升级的需要随着制造业智能化、自动化产业升级,公司产品的性能也需要不断优化升级。公司只
7、有以技术创新和市场开发为驱动,不断研发新产品,提升产品精密化程度,将产品质量水平提升到同类产品的领先水准,提高生产的灵活性和适应性,契合关键零部件国产化的需求,才能在与国外企业的竞争中获得优势,保持公司在领域的国内领先地位。四、 控制图的基本原理数据或质量特性值处理的方法中,不论是频数分布表、直方图、分布的计量值、分布规律及过程能力指数等所表示的都是数据在某一段时间内的静止状态。但是,生产过程中,用静态的方法不能随时发现问题以调整生产或工作。因此,生产过程或工作现场不仅需要处理数据的静态方法,也需要能了解数据随时间变化的动态方法,并以此为依据来控制产品生产过程或工作的质量。1、控制图的基本概念
8、控制图是对测定、记录、评估和监察过程是否处于统计控制状态的一种统计方法设计图。世界上第一张控制图是美国休哈特在1924年5月16日提出的不合格品率(P)控制图。(1)控制图的设计原理。正态性假设。3准则。小概率事件原理。小概率事件原理是指小概率的事件一般不会发生。由3准则可知,数据点落在控制界限以外的概率只有0.135%,因此,生产过程正常情况下,质量特性值是不会超过控制界限的,如果超出,则认为生产过程发生异常变化。(2)控制图应用经验与理论分析表明,当生产过程中只存在正常波动时,产品或过程质量将形成典型分布,若过程正常,即分布不变,则出现点子超过UCL或LCL的概率只有0.135%左右。若过
9、程异常,分布曲线上移或下移,产品或过程质量的分布必将偏离原来的典型分布,即,发生变化。发生这种情况的可能性很大,其概率可能为0.135%的几十至几百倍。小概率事件在一次试验中几乎不可能发生,若发生即判断异常。因此,根据典型分布是否偏离就能判断异常波动是否发生,而典型分布的偏离可由控制图检出,所以,控制图上的控制界限就是区分正常波动和异常波动的科学界限,亦可分析偶然因素与异常因素对过程的影响。2、控制图的基本种类(1)常规控制图的分类。常规控制图是按产品质量的特性及其分布规律所作的分类。均值极差控制图。均值标准差控制图。中位数极差控制图。单值移动极差控制图。不合格品率控制图。不合格品数控制图。缺
10、陷数控制图。单位缺陷数控制图。(2)按控制图的用途划分。按控制图的用途来划分,可以分为分析用控制图和控制用控制图。实施SPC分为两个阶段,一是分析阶段,二是监控阶段。在这两个阶段所使用的控制图分别被称为分析用控制图和控制用控制图。两者间的关系适应日本质量管理的名言:“始于控制图,终于控制图。”所谓“始于控制图”是指对过程的分析从应用控制图对过程进行分析开始,所谓“终于控制图”是指对过程的分析结束,最终建立了控制用控制图。故根据使用的目的和用途的不同,控制图可分为分析用控制图与控制用控制图。分析用控制图。分析用控制图是根据过去数据,主要用于分析现状,涉及分析两个方面的内容,一是所分析的过程是否处
11、于统计控制状态,二是该过程的过程能力指数是否满足要求,若经过分析后,生产过程处于非统计控制状态,则应查找原因并加以消除。控制用控制图。控制用控制图由分析控制图转化而来,当过程达到了确认的状态后,才能将分析用控制图的控制线延长作为控制用控制图。由于后者相当于生产中的立法,故由前者转为后者时应有正式交接手续。这里要用到判断稳态的准则(简称判断准则),在稳定之前还要用到判断异常的准则。进入日常管理后,关键是保持所确定的状态。经过一个阶段的使用后,可能又会出现异常,这时应查出原因,采取必要措施,加以消除,以恢复统计控制状态。3、控制图的界限公式对于常规控制图的控制界限计算公式,世界上各个国家都有相应的
12、标准。中华人民共和国国家标准常规控制图(GB/T40912001),等同于国际标准休哈特控制图(ISO8258:1991)及其1993年的修订本。(1)常规计量控制图的界限公式。(2)常规计数控制图的界限公式。计数控制图是通过记录所考察的样本中每个个体是否具有某种特性(或特征),如合格与不合格;合格率与不合格率;缺陷与单位缺陷等某种事件所发生的次数对过程进行监控的控制图。五、 控制图的观察与分析在生产过程中,通过分析控制图来判定生产过程是否处于稳定状态。1、控制图的判断稳态准则在生产过程中只存在偶然因素而不存在异常因素对过程的影响状态,这种状态称为统计控制过程状态或稳定状态,简称稳态。稳态是生
13、产过程追求的目标。在统计量为正态分布的情况下,只要有一个点子在界限外就可以判断有异常。但由于两类错误的存在,只根据一个点子在界限内外远不能判断生产过程处于稳态。如果连续在控制界内的点子更多,即使有个别点子出界,过程仍看作是稳态的,这就是判稳准则。在做控制图判别时,首先应该判断过程是否稳定。生产过程或工序是否处于受控状态,其基本判断条件有以下两条。(1)在控制界限内的点子排列无缺陷,为随机排列。点子排列无缺陷意味着应满足以下三个条件:样本点分布均匀,位于中心线两侧的样本点各占50%;靠近中心线的样本点约占2/3;靠近控制界限的样本点极少。(2)所有点子基本上都落在控制界限内。由概率论理论可知,小
14、概率事件可以认为不会发生。如果在控制图中点子未出界限,同时界线内点子的排列也是随机的,则认为生产过程处于稳定状态或控制状态。如果控制图点子出界或界限内点排列非随机,则认为生产过程不稳定或失控。对于生产过程或工序而言,控制图的判断稳态准则起着告警铃的作用,控制图点,子出界就好比告警铃响,告诉现在是应该进行查找原因、采取措施、防止再犯的时刻了。2、控制图的判异规则控制图上的点子依样本时间序列而出现在控制图上,通常是很随机地散布在管制界内。有时点子虽未超出管制界限,但一连串好几点都在管制图的中心线以上或点子呈现周期性变化时,也可判为异常。判异准则有两类:点出界就判异,这一点是针对界外点的;界内点排列
15、不随机判异,这一点则是针对界内点的。常规控制图的判异准则参照ISO8258和GB/T40912001有8种准则。将控制图等分为6个区。六、 过程能力1、过程能力过程能力(PC)是指过程(或工序)处于稳定状态下的实际加工能力,它是衡量工序质量的一种标志,又叫工序能力,在机械加工业中又叫加工精度。SPC的基准就是统计控制状态或称稳态。过程能力反映了稳态下该过程本身所表现的最佳性能(分布宽度最小)。因此,在稳态下,过程的性能是可预测的,过程能力也是可评价的。离开稳态这个基准,对过程就无法预测,也就无法评价。过程能力决定于由偶然因素造成的标准差。通常用6倍标准差(六西格玛)表示过程能力,它的数值越小越
16、好。2、过程能力指数过程能力指数,简称Cp或Cpk,以往称为工序能力指数,现在则统一称为过程能力指数。Cp是用于反映过程处于正常状态时,即人员、机器、原材料、工艺方法、测量和环境(5MIE)充分标准化并处于稳定状态时,所表现出的保证产品质量的能力。过程能力是表示生产过程客观存在着分散的一个参数。但是这个参数能否满足产品的技术规格要求,仅从它本身还难以看出。因此,还需要另一个参数来反映工序能力满足产品技术要求(公差、规格等质量标准)的程度。这个参数就叫做过程能力指数,也称为工序能力指数或工艺能力指数。它是技术规格要求和工序能力的比值。七、 过程能力的计算和评价(一)过程能力的计算当生产过程处于稳
17、定状态时,一定的工序能力指数与一定的不合格品率相对应。根据所采用数据类型的不同和技术要求的不同,工序能力指数和不合格概率的计算又可以分为四种情况。(二)过程能力评价过程能力指数客观且定量地反映了过程能力满足质量标准的程度。它与生产过程中的加工能力和管理水平有关。过程能力指数越大,产品的加工质量就越高。因此,在实际生产中,根据过程能力指数的大小对过程的加工能力进行分析和评价,以便于采取必要的措施,既要保证过程质量,又要使成本适宜。1、无偏状态下过程能力评价一般情况下,无偏状态是指过程中心与质量标准公差中心重合。(1)特等一过程能力过于充裕。在过程或工序允许的情况下,可考虑放宽管理或降低成本,可放
18、宽检查,如人和设备的配备可相对降低一些,这样可以带来降低成本、提高效率的效果;提高产品的原设计精度,改进产品性能;加大抽样间隔,减少抽验件数,降低检验的各种消耗。(2)1等过程能力充裕。按过程进行管理,正常运转;非重要过程或工序可允许小的外来波动;对不重要的过程或工序可放宽检查,工序控制抽样间隔可放宽。(3)2等过程能力尚可。必须加强对生产过程的监控,防止外来波动;调查4MIE因素,作必要改进;严格执行各种规范、标准、制度;坚持合理的抽样方案和检验规程。(4)3等一过程能力不足。必须采取措施提高过程或工序能力,通过因果图、排列图找出需要改进的因素;分析质量标准是否脱离实际,应实事求是地修正质量
19、指标过严的情况;加强质量检验工作。(5)4等一过程能力严重不足。立即追查原因,采取紧急措施,提高工序能力,对4MIE必须进行根本性的改革,要从根本上消除影响质量的关键因素。2、有偏状态下过程能力评价一般情况下,有偏状态是指过程分布中心与质量标准公差中心不重合,出现了偏移。从统计的角度看有偏状态,中心偏移使得过程分布中心值不在目标值上,偏移量的出现使得过程能力指数Cp降低,过程输出的不合格品率增加。八、 质量数据与分布规律1、质量数据的基本概念定量分析是现代质量管理中的基本特征之一。为了进行定量分析,就必须有数据。因此,在质量管理中要特别重视对数据的搜集、整理和分析工作。质量数据是指某质量指标的
20、质量特性值,在质量控制过程中,将检测和分析得到的质量特性值用数字记录下来,简称质量数据。由于质量一词含义丰富,既包括狭义的产品质量,也包括广义的工作质量,因而质量指标在企业中就多种多样,质量数据在企业中几乎无处不在。在质量数据统计分析中,从样本到总体的问题,即统计推断问题。所谓统计推断,就是根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。因此,特别关注三项指标,一是数据的集中位置,二是数据的分散程度,三是数据的分布规律。质量数据是指由个体产品质量特性值组成的样本(总体)的质量数据集,在统计上称为变量;个体产品质量特性值称变量值,根据质量数据的特点,可以将其分为计量值数据和
21、计数值数据。(1)计量值数据。计量值数据是指可以连续取值的数据,属于连续型变量。其特点是在任意两个数值之间都可以取精度较高一级的数值。它通常可以用仪器测量的连续性数据,如长度、重量、强度、时间、标高、位移等。(2)计数值数据。计数值数据是指不能连续取值的,只能用自然数表示的数据,属于离散型变量。如合格品件数、废品数、错字数、质量缺陷点数等。计数值数据还可进一步划分为计件值数据和计点值数据。计件值数据是指按产品个数计数的数据,如合格品件数、废品件数等;计点值数据是指按点计数的数据,如缺陷、棉布上的疵点数、铸件上的砂眼数等。计数值是指具有离散分布性的数据。2、质量数据的统计特征值应用统计过程质量控
22、制,其基本的做法就是用有限的样本去分析推断总体的特征。过程的质量特性值是不断波动的。当搜集到的数据足够多时,就会发现一个现象,即所有数据都在一定范围内分散在一个中心值周围,越靠近中心值,数据越多;越偏离中心值,数据越少。这意味着数据的分散是有规律的,表现为数据的集中性。数据的分散性和集中性统称为数据的“统计规律性”。质量数据的集中趋势和离散程度反映了总体质量变化的内在规律性。(1)质量数据的位置特征值。在分析质量数据的分布状态时,描述数据分布集中趋势主要有算术平均值、中位数等。(2)数据的离散特征数。数据的分散程度在质量管理中就是质量特性值的波动性,反映过程能力。在分析数据的分布状态时,常被用
23、于表示数据分布的离散程度的特征数,主要有极差、标准偏差等。3、质量数据的分布规律质量数据具有个体数值的波动性和总体分布的规律性。在统计过程质量控制中,各种统计技术的应用都是以质量数据的分布规律为依据进行的,其中最常用的有正态分布、二项式分布和泊松分布。(1)正态分布。正态分布是一种最常见的连续性随机变量的概率分布。其特征是“钟”形曲线。实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同范围内正态曲线下的面积可用公式计算。轴与正态曲线之间的面积恒等于1。(2)二项分布。二项分布是一种典型的离散性分布。(3)泊松分布。泊松分布P(
24、A)中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如,某电话交换台收到的呼叫来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白细胞等,以固定的平均瞬时速率入(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。九、 过程质量控制的特点1、统计过程质量控制的基本概念所谓控制是要以某个标准为基准,一旦偏离了这个基准,就要尽快加以纠正,使之保持这个基准。SPC(统计过程控制)就是以统计控制状态(稳态)作为基准的,这是一个非常重要的基本概念。统计控制状态也称稳态,即过程中只有正常因素
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水产 加工 产品 项目 质量管理 手册
限制150内