核反应堆物理分析课后习题参考答案.doc
《核反应堆物理分析课后习题参考答案.doc》由会员分享,可在线阅读,更多相关《核反应堆物理分析课后习题参考答案.doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 核反应堆物理分析答案 第一章1-1.某压水堆采用UO2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。试计算:当中子能量为0.0253eV时,UO2的宏观吸收截面和宏观裂变截面。解:由18页表1-3查得,0.0253eV时:由289页附录3查得,0.0253eV时:以c5表示富集铀内U-235与U的核子数之比,表示富集度,则有:所以,1-2.某反应堆堆芯由U-235,H2O和Al组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。解:由18页表1-3查得,0.0253eV时: 由289页附录3查得,0.0253eV时:可
2、得天然U核子数密度则纯U-235的宏观吸收截面:总的宏观吸收截面:1-3、求热中子(0.025电子伏)在轻水、重水、和镉中运动时,被吸收前平均遭受的散射碰撞次数。-解:设碰撞次数为t 1-4、试比较:将2.0MeV的中子束强度减弱到1/10分别需要的Al,Na,和Pb的厚度。解:查表得到E=0.0253eV中子截面数据: a s Al: 0.015 0.084 Na: 0.013 0.102 Pb: 0.006 0.363Al和Na的宏观吸收截面满足1/v律。Q:铅对2MeV中子的吸收截面在屏蔽中是否可以忽略?(在跨越了可分辨共振区后截面变得非常小) a=a(0.0253)(0.0253/2&
3、#215;106)1/2 a Al 0.0169×10-4 Na 0.0146×10-4窄束中子衰减规律: I=I0e -x I=(1/10)I0 x=(ln10)/ 因此若只考虑吸收衰减: xAl=136.25×104m xNa=157.71×104m对于轻核和中等质量核,弹性散射截面在eV几MeV范围内基本不变。所以只考虑弹性散射截面时,结果如下:(相比较之下能量为2MeV时,弹性散射截面要比吸收界面大很多) 但是不清楚对于重核铅弹性截面基本不变的假设是否成立? xAl=27.41m xNa=22.57m xPb=6.34m1-6 1-7有一座小型核
4、电站,电功率为15万千瓦,设电站的效率为27%,试估算该电站反应堆额定功率运行一小时所消耗的铀-235数量。解:热能:裂变U235核数:俘获加裂变U235核数:消耗U235总质量量:8、某反应堆在额定功率500兆瓦下运行了31天后停堆,设每次裂变产生的裂变产物的放射性活度为1.08×10-16t-1.2居里。此处t为裂变后的时间,单位为天,试估算停堆24小时堆内裂变产物的居里数 解: 1-9设核燃料中铀-235的浓缩度为3.2%(重量),试求铀-235与铀-238的核子数之比。 1-10.为使铀的1.7,试求铀中U-235富集度应为多少(E=0.0253eV)。解:由18页表1-3查
5、得,0.0253eV时:由定义易得:为使铀的1.7, 富集11.、为了得到1千瓦时的能量,需要使多少铀-235裂变解:设单次裂变产生能量200MeVU235裂变数:U235质量:1-12 反应堆的电功率为1000兆瓦,设电站的效率为32%。问每秒有多少个铀-235发生裂变?问运行一年共需消耗多少公斤易裂变物质?一座相同功率煤电厂在同样时间需要多少燃料?已知标准煤的燃烧热为Q=29兆焦/公斤。每秒钟发出的热量: 每秒钟裂变的U235:运行一年的裂变的U235:消耗的u235质量: 需消耗的煤: . 一核电站以富集度20%的U-235为燃料,热功率900MW,年负荷因子(实际年发电量/额定年发电量
6、)为0.85, U-235的俘获裂变比取0.169,试计算其一年消耗的核燃料质量。解:该电站一年释放出的总能量=对应总的裂变反应数=因为对核燃料而言:核燃料总的核反应次数=消耗的U-235质量=消耗的核燃料质量= 第二章.某裂变堆,快中子增殖因数1.05,逃脱共振俘获概率0.9,慢化不泄漏概率0.952,扩散不泄漏概率0.94,有效裂变中子数1.335,热中子利用系数0.882,试计算其有效增殖因数和无限介质增殖因数。解: 无限介质增殖因数: 不泄漏概率:有效增殖因数:2-1.H和O在1000eV到1eV能量范围内的散射截面近似为常数,分别为20b和38b。计算H2O的以及在H2O中中子从10
7、00eV慢化到1eV所需的平均碰撞次数。解:不难得出,H2O的散射截面与平均对数能降应有下述关系:H2OH2O = 2HH + OO即:(2H + O ) H2O = 2HH + OOH2O =(2HH + OO)/(2H + O )查附录3,可知平均对数能降:H=1.000,O=0.120,代入计算得:H2O = (2×20×1.000 + 38×0.120)/(2×20 + 38) = 0.571可得平均碰撞次数:Nc = ln(E2/E1)/ H2O = ln(1000/1)/0.571 = 12.09 12.12-6.在讨论中子热化时,认为热中子
8、源项Q(E)是从某给定分界能Ec以上能区的中子,经过弹性散射慢化而来的。设慢化能谱服从(E)=/E分布,试求在氢介质内每秒每单位体积内由Ec以上能区,(1)散射到能量E(E<Ec)的单位能量间隔内之中子数Q(E);(2)散射到能量区间Eg=Eg-1-Eg内的中子数Qg。解:(1)由题意可知:对于氢介质而言,一次碰撞就足以使中子越过中能区,可以认为宏观截面为常数:在质心系下,利用各向同性散射函数:。已知,有:(这里隐含一个前提:E/>E)(2)利用上一问的结论:2-8.计算温度为535.5K,密度为0.802×103 kg/m3的H2O的热中子平均宏观吸收截面。解:已知H2
9、O的相关参数,M = 18.015 g/mol, = 0.802×103 kg/m3,可得: m-3已知玻尔兹曼常数k = 1.38×10-23 JK-1,则:kTM = 1.38 ×10-23×535.5 = 739.0 (J) = 0.4619 (eV)查附录3,得热中子对应能量下,a = 0.664 b, = 0.948,s = 103 b,a = 0.664 b,由“1/v”律:0.4914 (b)由56页(2-81)式,中子温度: 577.8 (K)对于这种”1/v”介质,有: n 0.4192 (b)所以:1.123 (m-1) 三章3.1
10、有两束方向相反的平行热中子束射到235U薄片上,设其上某点自左面入射的中子束强度为1012 cm-2·s-1。自右面入射的中子束强度2×1012 cm-2·s-1。计算:(1)该点的中子通量密度;(2)该点的中子流密度;(3)设a = 19.2×102 m-1,求该点的吸收率。解:(1)由定义可知:3×1012 (cm-2·s-1)(2)若以向右为正方向:-1×1012 (cm-2·s-1) 可见其方向垂直于薄片表面向左。(3)19.23×1012 = 5.76×1013 (cm-3·
11、s-1)3.2 设在x处中子密度的分布函数是其中:,为常数,是与x轴的夹角。求:(1) 中子总密度n( x );(2) 与能量相关的中子通量密度( x, E );(3) 中子流密度J( x, E )。解:由于此处中子密度只与与x轴的夹角有关,不妨视为极角,定义在Y-Z平面的投影上与Z轴的夹角为方向角,则有:(1)根据定义:可见,上式可积的前提应保证 < 0,则有:(2)令mn为中子质量,则(等价性证明:如果不作坐标变换,则依据投影关系可得:则涉及角通量的、关于空间角的积分:对比:可知两种方法的等价性。)(3)根据定义式:利用不定积分: (其中n为正整数),则:3.7 设一立方体反应堆,边
12、长 = 9 m。中子通量密度分布为已知D = 0.84×10-2m,L = 0.175 m。试求:(1) 表达式;(2) 从两端及侧面每秒泄漏的中子数;(3) 每秒被吸收的中子数(设外推距离很小可略去)。解:有必要将坐标原点取在立方体的几何中心,以保证中子通量始终为正。为简化表达式起见,不妨设0 = 3×1013 cm-2s-1。(1)利用Ficks Law:(2)先计算上端面的泄漏率:同理可得,六个面上总的泄漏率为:L = 1.7×1017 (s-1)其中,两端面的泄漏率为L/3 = 5.8×1016 (s-1);侧面的泄漏率为L-L/3 = 1.2&
13、#215;1017 (s-1)(如果有同学把问题理解成六个面上总的泄漏,也不算错)(3)由可得由于外推距离可忽略,只考虑堆体积内的吸收反应率: 1.24×1020 (s-1)3.8 圆柱体裸堆内中子通量密度分布为其中,H,R为反应堆的高度和半径(假定外推距离可略去不计)。试求:(1) 径向和轴向的平均中子通量密度与最大中子通量密度之比;(2) 每秒从堆侧表面和两个端面泄漏的中子数;(3) 设H = 7 m,R = 3 m,反应堆功率为10 MW,f,5 = 410 b,求反应堆内235U的装载量。解:有必要将坐标原点取在圆柱体的几何中心,以保证中子通量始终为正。为简化表达式起见,不妨
14、设0 = 1012 cm-2s-1。且借用上一题的D值。(1)先考虑轴向:且在整个堆内只在z = 0时为0,故有: 径向:且在整个堆内只在r= 0时为0,故有:已知,所以:0.611(2)先计算上端面的泄漏率:易知,两端面总泄漏率为2.93×1014 (s-1)侧面泄漏率:利用Bessel函数微分关系式:,且已知J1(2.405) = 0.5191,可得:所以:4.68×1014 (s-1)(3)已知每次裂变释能(J)所以:其中:利用Bessel函数的积分关系式:,可得已知:J1(0) = 0,J1(2.405) = 0.5191,所以:= 5.44×1017 (
15、ms-1)所以:106/(3.2×10-11×410×10-28×5.44×1017) = 1.40×1024 (m-3)所需235U装载量:10-3×1.40×1024×3.14×32×7×235/(6.02×1023 ) = 108 (kg)3.9 试计算E = 0.025 eV时的铍和石墨的扩散系数。解:查附录3可得,对于E = 0.025 eV的中子:/m-1Be8.650.9259C3.850.9444对于Be:0.0416 (m)同理可得,对于C:D =
16、 0.0917 (m)3-12 试计算T = 535 K, = 802 kg/m3 时水的热中子扩散系数和扩散长度。解:查79页表3-2可得,294K时:m,由定义可知:所以:0.00195 (m)(另一种方法:如果近似认为水的微观散射截面在热能区为常数,且不受温度影响,查附表3可得:在T = 535 K, = 802 kg/m3 时,水的分子数密度:103×802×6.02×1023 / 18 = 2.68×1028 (m-3)所以:276 (m-1)1/(3×2.68×103×0.676)= 0.00179 (m)这一结
17、果只能作为近似值)中子温度利用56页(2-81)式计算:其中,介质吸收截面在中子能量等于kTM = 7.28×1021 J = 0.0461 eV 再利用“1/v”律:0.4920 (b)Tn = 535×( 1 + 0.46×36×0.4920 / 103 ) = 577 (K)(若认为其值与在0.0253 eV时的值相差不大,直接用0.0253 eV热中子数据计算:Tn = 535×( 1 + 0.46×36×0.664 / 103 ) = 592 (K)这是一种近似结果)(另一种方法:查79页表3-2,利用293K时的
18、平均宏观吸收截面与平均散射截面:(m-1)1 / (3×0.0016×0.676)= 308 (m-1)进而可得到Tn = 592 K)利用57页(2-88)式0.414×10-28 (m2)1.11 (m-1)802 / ( 3×1000×0.0016×0.676 ) = 247 (m-1)0.0424 (m)(此题如果利用79页(3-77)式来计算:由于水是“1/v”介质,非1/v修正因子为1:代入中子温度可得:0.0340 (m)这是错误的!因为(3-74)式是在(3-76)式基础上导出的,而(3-76)式是栅格的计算公式,其前
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 核反应堆 物理 分析 课后 习题 参考答案
限制150内