《初中数学总复习资料》专题30 图形的轴对称-2018年中考数学考点总动员系列(原卷版).doc
《《初中数学总复习资料》专题30 图形的轴对称-2018年中考数学考点总动员系列(原卷版).doc》由会员分享,可在线阅读,更多相关《《初中数学总复习资料》专题30 图形的轴对称-2018年中考数学考点总动员系列(原卷版).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2018年中考数学备考之黄金考点聚焦考点三十:图形的轴对称 聚焦考点温习理解1如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点2图形轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线轴对称图形的对称轴,是任意一对对应点所连线段的垂直平分线对应线段、对应角相等3由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是
2、原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分这样,由一个平面图形得到它的轴对称图形叫做轴对称变换一个轴对称图形可以看作以它的一部分为基础,经轴对称变换而成学、科网4. 轴对称与轴对称图形轴对称图形和图形的轴对称之间的的区别是:轴对称图形是一个具有特殊性质的图形,而图形的轴对称是说两个图形之间的位置关系;两者之间的联系是:若把轴对称的两个图形视为一个整体,则它就是一个轴对称图形;若把轴对称图形在对称轴两旁的部分视为两个图形,则这两个图形就形成轴对称的位置关系名师点睛典例分类考点典例一、识别轴对称图形【例1】(2017重庆A卷第2题)下列图形中是轴对称图形的是()【
3、答案】C.【解析】考点:轴对称图形.【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合判断图形是否是轴对称图形,关键是理解、应用轴对称图形的定义,看是否能找到至少1条合适的直线,使该图形沿着这条直线对折后,两旁能够完全重合若能找到,则是轴对称图形;若找不到,则不是轴对称图形【举一反三】1. (2017山东烟台第2题)下列国旗图案是轴对称图形但不是中心对称图形的是( )2. (2017江苏盐城第3题)下列图形中,是轴对称图形的是()考点典例二、作已知图形的轴对称图形【例2】(2017浙江宁波第20题)在的方格纸中,的三个顶点都在格点上. (1)在图1中画出与成
4、轴对称且与有公共边的格点三角形(画出一个即可);(2)将图2中的绕着点按顺时针方向旋转,画出经旋转后的三角形. 【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:根据题意画出图形即可.试题解析:(1)如图所示:或(2)如图所示:考点:1.轴对称图形;2.旋转.【点睛】此题主要考查了轴对称变换,得出对应点坐标是解题关键画轴对称图形,关键是先作出一条对称轴,对于直线、线段、多边形等特殊图形,一般只要作出直线上的任意两点、线段端点、多边形的顶点等的对称点,就能准确作出图形【举一反三】(2017内蒙古呼和浩特第3题)如图中序号(1)(2)(3)(4)对应的四个三角形,都是这个图形进行了一次
5、变换之后得到的,其中是通过轴对称得到的是( )A(1)B(2)C(3)D(4) 考点典例三、轴对称性质的应用【例3】(2017贵州安顺第17题)如图所示,正方形ABCD的边长为6,ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 学科+网【答案】6.【解析】试题解析:设BE与AC交于点P,连接BD,点B与D关于AC对称,PD=PB,来源:学科网ZXXKPD+PE=PB+PE=BE最小即P在AC与BE的交点上时,PD+PE最小,为BE的长度;正方形ABCD的边长为6,AB=6又ABE是等边三角形,来源:学科网ZXXKBE=AB=6故所求最小
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学总复习资料专题30图形的轴对称-2018年中考数学考点总动员系列(原卷版)
限制150内