《中考课件初中数学总复习资料》备战2020年中考数学一轮专项复习——函数综合问题(含详细解答).doc
《《中考课件初中数学总复习资料》备战2020年中考数学一轮专项复习——函数综合问题(含详细解答).doc》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》备战2020年中考数学一轮专项复习——函数综合问题(含详细解答).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、备战2020年中考数学一轮专项复习函数综合问题(一次函数、反比例函数、二次函数综合)1【2019遂宁中考】如图,一次函数yx3的图象与反比例函数y(k0)的图象交于点A与点B(a,4)(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若POC的面积为3,求出点P的坐标2为积极响应党中央关于支援5·12汶川地震灾区抗震救灾的号召,宜佳工厂日夜连续加班,计划为灾区生产m顶帐篷生产过程中的剩余生产任务y(顶)与已用生产时间x(时)之间的关系如图所示(1)求变量y与x之间的关系式;(2)求m的值3随
2、着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10 000 kg小龙虾,计划养殖一段时间后再出售已知每天养殖龙虾的成本相同,放养10天的总成本为166 000元,放养30天的总成本为178 000元设这批小龙虾放养t天后的质量为a kg,销售单价为y元,根据往年的行情预测,a与t的函数关系式为ay与t的函数关系如图所示(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本放养总费用收购成本;利润销售总
3、额总成本)4A,B两地相距1 100米,甲从A地出发,乙从B地出发,相向而行,甲比乙先出发2分钟,乙出发7分钟后与甲相遇设甲、乙两人相距y米,甲行进的时间为t分钟,y与t之间的函数关系如图所示请你结合图象探究:(1)甲的行进速度为每分钟 米,m 分钟;(2)求直线PQ对应的函数表达式;(3)求乙的行进速度5. 某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC6m,跨度AB20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m. (1) 以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式; (2) 若支柱
4、每米造价为2万元,求5根支柱的总造价; (3) 拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟? 6如图,已知A(4,n),B(2,4)是一次函数ykxb和反比例函数y的图象的两个交点(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kxb0的解;(3)求AOB的面积;(4)观察图象,直接写出不等式kxb<0的解集7童装店销售某款童装,每件售
5、价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反映:每降价1元,每星期可多卖10件已知该款童装每件成本30元设该款童装每件售价x元,每星期的销售量为y件(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)当每件童装售价定为多少元时,该店一星期可获得3 910元的利润?若该店每星期想要获得不低于3 910元的利润,则每星期至少要销售该款童装多少件?8如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(1,0),B(4,0),C(0,4)三点,点P是直线BC下方抛物线上一动点(1)求这个二次函数
6、的解析式;(2)是否存在点P,使POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,PBC面积最大求出此时P点坐标和PBC的最大面积9某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时,汽车行驶速度不超过100千米/小时,根据经验,v,t的一组对应值如下表:v(千米/小时)7580859095t(小时)4.003.753.533.333.16(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场
7、?请说明理由;(3)若汽车到达杭州市场的行驶时间满足3.5t4,求平均速度v的取值范围10A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是 (填l1或l2);甲的速度是 km/h,乙的速度是 km/h;(2)甲出发多少小时两人恰好相距5 km?11我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在温度为1520 的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y( )随时间x(h)变化的函数图象,其中AB段是
8、恒温阶段,BC段是双曲线y的一部分,请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有多少小时?(2)求k的值;(3)恒温系统在一天24小时内大棚温度在1520 的时间有多少小时?12如图,在平面直角坐标系中,抛物线yax2bxc的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数yax2bxc的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为
9、顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标参考答案1【2019遂宁中考】如图,一次函数yx3的图象与反比例函数y(k0)的图象交于点A与点B(a,4)(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若POC的面积为3,求出点P的坐标【解答】解:(1)将B(a,4)代入一次函数yx3中得:a1B(1,4)将B(1,4)代入反比例函数y(k0)中得:k4反比例函数的表达式为y;(2)如图:设点P的坐标为(m,)(m0),则C(m,m3)PC|(m3)|,点O到直线PC的距离为mPOC的面
10、积m×|(m3)|3解得:m5或2或1或2点P不与点A重合,且A(4,1)m4又m0m5或1或2点P的坐标为(5,)或(1,4)或(2,2)2为积极响应党中央关于支援5·12汶川地震灾区抗震救灾的号召,宜佳工厂日夜连续加班,计划为灾区生产m顶帐篷生产过程中的剩余生产任务y(顶)与已用生产时间x(时)之间的关系如图所示(1)求变量y与x之间的关系式;(2)求m的值【解析】 (1)设y与x的关系式为ykxb由图象知,点(30,400),(50,0)在ykxb的图象上,将两点的坐标代入上述关系式,得解得y与x的关系式为y20x1 000.(2)当x0时,y1 000,所以m的值是
11、1 000.3随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10 000 kg小龙虾,计划养殖一段时间后再出售已知每天养殖龙虾的成本相同,放养10天的总成本为166 000元,放养30天的总成本为178 000元设这批小龙虾放养t天后的质量为a kg,销售单价为y元,根据往年的行情预测,a与t的函数关系式为ay与t的函数关系如图所示(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本放养总费用收购
12、成本;利润销售总额总成本)解:(1)依题意,得解得(2)当0t20时,设yk1tb1,由图象得解得yt16.当20<t50时,设yk2tb2,由图象得解得yt32.综上所述,y(3)由题可知Wyamtn.当0t20时,W10 000600t160 0005 400t,5 400>0,当t20时,W最大5 400×20108 000.当20<t50时,W(100t8 000)600t160 00020(t25)2108 500.20<0,抛物线开口向下,当t25,W最大108 500.108 500>108 000,当t25时,W取得最大值,该最大值为10
13、8 500元4A,B两地相距1 100米,甲从A地出发,乙从B地出发,相向而行,甲比乙先出发2分钟,乙出发7分钟后与甲相遇设甲、乙两人相距y米,甲行进的时间为t分钟,y与t之间的函数关系如图所示请你结合图象探究:(1)甲的行进速度为每分钟_60_米,m_9_分钟;(2)求直线PQ对应的函数表达式;(3)求乙的行进速度【解析】 (1)由题意,得甲的行进速度为(1 100980)÷260米,m729分钟(2)设直线PQ的解析式为yktb,由题意,得解得:y60t1 100.直线PQ对应的函数表达式为y60t1 100;(3)设乙的行进速度为a米/分,由题意,得980÷(a60)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料 中考 课件 初中 数学 复习资料 备战 2020 年中 一轮 专项 复习 函数 综合 问题 详细 解答
链接地址:https://www.taowenge.com/p-4964240.html
限制150内