(创新设计X年高考数学(人教A版理)一轮复习配套.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《(创新设计X年高考数学(人教A版理)一轮复习配套.docx》由会员分享,可在线阅读,更多相关《(创新设计X年高考数学(人教A版理)一轮复习配套.docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第4讲平面向量应用举例最新考纲1会用向量方法解决某些简单的平面几何问题2会用向量方法解决简单的力学问题与其他一些实际问题.知 识 梳 理1向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:ab(b0)abx1y2x2y10.(2)证明垂直问题,常用数量积的运算性质abab0x1x2y1y20(a,b均为非零向量)(3)求夹角问题,利用夹角公式cos (为a与b的夹角)2向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考
2、热点题型解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识3向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体4向量在物理中的应用物理学中的力、速度、位移都是矢量,它们的分解、合成与向量的加减法相似,因此可以用向量的知识来解决某些物理问题.学生用书第76页辨 析 感 悟1向量与其他数学知识的交汇(1)已知ABC中,BC边最长,a,b,且ab0,则ABC的形状为钝角三角形()(2)在四边形ABCD
3、中,且0,则四边形ABCD是矩形()(3)(2014贵州调研改编)在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足4,则点P的轨迹方程是x2y40.()2平面向量在物理中的应用(4)作用于同一点的两个力F1和F2的夹角为,且|F1|3,|F2|5,则F1F2大小为.()(5)已知一物体在共点力F1(lg 2,lg 2),F2(lg 5,lg 2)的作用下产生位移s(2lg 5,1),则共点力对物体做的功W为2.()感悟提升1一个手段实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算2两条主线(1)向量兼具代数的抽象与严谨和几何的直观与形象,向量本身
4、是一个数形结合的产物,在利用向量解决问题时,要注意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合(2)要注意变换思维方式,能从不同角度看问题,要善于应用向量的有关性质解题.考点一向量在平面几何中的应用【例1】 (1)(2013新课标全国卷)已知正方形ABCD的边长为2,E为CD的中点,则_.(2)(2013天津卷)在平行四边形ABCD中,AD1,BAD60,E为CD的中点若1,则AB的长为_审题路线(1)法一:把向量与分别用基底,表示法二:建立平面直角坐标系求向量,的坐标(2)把向量与分别用基底,表示利用1整理建立关于|的一元二次方程解得|.解析(1)法一()2222222.法二以A
5、为原点建立平面直角坐标系(如图)则A(0,0),B(2,0),C(2,2),D(0,2),E(1,2)(1,2),(2,2)从而(1,2)(2,2)1(2)222.(2)由题意可知,.因为1,所以()1,即221.因为|1,BAD60,所以|,因此式可化为1|21,解得|0(舍去)或,所以AB的长为.答案(1)2(2)规律方法 用平面向量解决平面几何问题时,有两种方法:基向量法和坐标系法,建立平面直角坐标系时一般利用已知的垂直关系,或使较多的点落在坐标轴上,这样便于迅速解题【训练1】 (1)(2014杭州质检)在边长为1的菱形ABCD中,BAD60,E是BC的中点,则()A. B. C. D.
6、(2)在ABC所在平面上有一点P,满足,则PAB与ABC的面积之比值是()A. B. C. D.解析(1)建立如图平面直角坐标系,则A,C,B.E点坐标为,(,0),.(2)由已知可得2,P是线段AC的三等分点(靠近点A),易知SPABSABC,即SPABSABC13.答案(1)D(2)A考点二向量在三角函数中的应用【例2】 设向量a(4cos ,sin ),b(sin ,4cos ),c(cos ,4sin )(1)若a与b2c垂直,求tan()的值;(2)求|bc|的最大值;(3)若tan tan 16,求证:ab.(1)解因为a与b2c垂直,所以a(b2c)4cos sin 8cos c
7、os 4sin cos 8sin sin 4sin()8cos()0,因此tan()2.(2)解由bc(sin cos ,4cos 4sin ),得|bc|4.又当k(kZ)时,等号成立,所以|bc|的最大值为4.(3)证明由tan tan 16,得,所以ab.规律方法 (1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等【训练2】 (2013江苏卷)已知向量a(cos ,sin ),b(co
8、s ,sin ),0.(1)若|ab|,求证:ab;(2)设c(0,1),若abc,求,的值解(1)由题意得|ab|22,即(ab)2a22abb22.又因为a2b2|a|2|b|21,所以22ab2,即ab0,故ab.(2)因为ab(cos cos ,sin sin )(0,1),所以由此得,cos cos(),由0,得0,又0,故.代入sin sin 1得,sin sin ,而,所以,.学生用书第77页考点三向量在解析几何中的应用【例3】 (2013湖南卷)已知平面上一定点C(2,0)和直线l:x8,P为该平面上一动点,作PQl,垂足为Q,且0.(1)求动点P的轨迹方程;(2)若EF为圆N
9、:x2(y1)21的任一条直径,求的最值解(1)设P(x,y),则Q(8,y)由()()0,得|2|20,即(x2)2y2(x8)20,化简得1.所以点P在椭圆上,其方程为1.(2)因()()()()()2221,P是椭圆1上的任一点,设P(x0,y0),则有1,即x16,又N(0,1),所以2x(y01)2y2y017(y03)220.因y02,2,所以当y03时,2取得最大值20,故的最大值为19;当y02时,2取得最小值为134(此时x00),故的最小值为124.规律方法 向量在解析几何中的作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、
10、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题(2)工具作用:利用abab0;abab(b0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法【训练3】 已知点P(0,3),点A在x轴上,点Q在y轴的正半轴上,点M满足0,当点A在x轴上移动时,求动点M的轨迹方程解设M(x,y)为所求轨迹上任一点,设A(a,0),Q(0,b)(b0),则(a,3),(xa,y),(x,by),由0,得a(xa)3y0.由,得(xa,y)(x,by),把a代入,得3y0,整理得yx2(x0)所以动点M
11、的轨迹方程为yx2(x0) 1向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题2以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法3解析几何问题和向量的联系:可将向量用点的坐标表示,利用向量运算及性质解决解析几何问题 创新突破5破解平面向量与圆的交汇问题【典例】 (2013湖南卷改编)已知a,b是单位向量,ab0.若向量c满足|cab|1,则|c|的最大值为_突破1:根据条件转化到平面直角坐标系中突破2:把条件坐标化突
12、破3:把坐标化后的式子配方整理可得到圆的方程突破4:利用圆的知识求|c|max.解析建立如图所示的直角坐标系,由题意知ab,且a与b是单位向量,可设a(1,0),b(0,1),c(x,y)cab(x1,y1),|cab|1,(x1)2(y1)21,即点C(x,y)的轨迹是以M(1,1)为圆心,1为半径的圆而|c|,|c|的最大值为|OM|1,即|c|max1.答案1反思感悟 平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数
13、最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决本题采用了“形化”与“数化”的结合,利用坐标运算将问题转化为圆的知识解决【自主体验】1ABC外接圆的半径为1,圆心为O,且2 0,|,则()A. B. C3 D2解析由2 0,得2 0,即,即O,B,C三点共线,BC为ABC外接圆的直径,故BAC90.又|,得B60,所以C30,且|(如图所示)所以|cos 3023.答案C2给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上运动若x y ,其中x,yR,则xy的最大值是_解析法一以O为坐标原点,所在的直线为x轴建立平面直角坐标系,如
14、图所示,则A(1,0),B,设AOC,则C(cos ,sin ),由x y ,得所以xcos sin ,ysin ,所以xycos sin 2sin,又,所以当时,xy取得最大值2.法二依题意,|1,则|21,又xy,|1,120,x22y222xy1,因此x2y22xycos 1201,xyx2y21.3xy(xy)2132,即(xy)24.xy的最大值是2.答案2基础巩固题组(建议用时:40分钟)一、选择题1(2014邵阳模拟)已知a(1,sin2x),b(2,sin 2x),其中x(0,)若|ab|a|b|,则tan x的值等于()A1 B1 C. D.解析由|ab|a|b|知,ab.所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新 设计 年高 数学 人教 版理 一轮 复习 配套
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内