《初中数学总复习资料》2018年中考数学复习方法技巧九大专题:2018年中考数学复习方法技巧专题一:数形结合思想解析.doc
《《初中数学总复习资料》2018年中考数学复习方法技巧九大专题:2018年中考数学复习方法技巧专题一:数形结合思想解析.doc》由会员分享,可在线阅读,更多相关《《初中数学总复习资料》2018年中考数学复习方法技巧九大专题:2018年中考数学复习方法技巧专题一:数形结合思想解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、方法技巧专题一数形结合思想数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想数形结合也是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质主要含有以下三个层次:一、在有理数中的应用:【例题】(2017乌鲁木齐)如图
2、,数轴上点A表示数a,则|a|是()A2B1C1D2【考点】13:数轴;15:绝对值【分析】直接根据数轴上A点的位置可求a,再根据绝对值的性质即可得出结论【解答】解:A点在2处,数轴上A点表示的数a=2,|a|=|2|=2故选A【同步训练】(2017湖南株洲)如图示,数轴上点A所表示的数的绝对值为()A2B2C±2D以上均不对【考点】13:数轴;15:绝对值【分析】根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决【解答】解:由数轴可得,点A表示的数是2,|2|=2,故选A二、在代数式中的应用【例题】(2017浙江衢州)如图,从边长为(a+3)的正方形纸片中剪去一
3、个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6【考点】4G:平方差公式的几何背景【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解【解答】解:拼成的长方形的面积=(a+3)232,=(a+3+3)(a+33),=a(a+6),拼成的长方形一边长为a,另一边长是a+6故答案为:a+6【同步训练】利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式a2+2ab+b2=(a+b)2【考点】因式分解-运用公式法【分
4、析】根据提示可知1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形,利用面积和列出等式即可求解【解答】解:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2【点评】本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系三、列方程(组)解应用题中的应用【例题】(2017甘肃张掖)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2若设道路的宽为xm,则下面所
5、列方程正确的是()A(322x)(20x)=570B32x+2×20x=32×20570C(32x)(20x)=32×20570D32x+2×20x2x2=570【考点】AC:由实际问题抽象出一元二次方程【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程【解答】解:设道路的宽为xm,根据题意得:(322x)(20x)=570,故选:A【同步训练】(2017张家界)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子每件文化衫的批发价
6、和零售价如下表:批发价(元)零售价(元)黑色文化衫1025白色文化衫820假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?【考点】9A:二元一次方程组的应用【分析】设黑色文化衫x件,白色文化衫y件,依据黑白两种颜色的文化衫共140件,文化衫全部售出共获利1860元,列二元一次方程组进行求解【解答】解:设黑色文化衫x件,白色文化衫y件,依题意得,解得,答:黑色文化衫60件,白色文化衫80件四、在函数中的综合应用【例题】(2017湖北咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作
7、人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件(1)第24天的日销售量是330件,日销售利润是660元(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【考点】FH:一次函数的应用【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用
8、待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0x18和18x30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润【解答】解:(1)340(2422)×5=330(件),330×(86)=660(元)故答案为:330;660(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,
9、340)代入y=kx中,340=17k,解得:k=20,线段OD所表示的y与x之间的函数关系式为y=20x根据题意得:线段DE所表示的y与x之间的函数关系式为y=3405(x22)=5x+450联立两线段所表示的函数关系式成方程组,得,解得:,交点D的坐标为(18,360),y与x之间的函数关系式为y=(3)当0x18时,根据题意得:(86)×20x640,解得:x16;当18x30时,根据题意得:(86)×(5x+450)640,解得:x2616x262616+1=11(天),日销售利润不低于640元的天数共有11天点D的坐标为(18,360),日最大销售量为360件,3
10、60×2=720(元),试销售期间,日销售最大利润是720元【同步训练】(2017新疆)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系(1)活动中心与小宇家相距22千米,小宇在活动中心活动时间为2小时,他从活动中心返家时,步行用了0.4小时;(2)求线
11、段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由【考点】FH:一次函数的应用【分析】(1)根据点A、B坐标结合时间=路程÷速度,即可得出结论;(2)根据离家距离=22速度×时间,即可得出y与x之间的函数关系式;(3)由小宇步行的时间等于爸爸开车接到小宇的时间结合往返时间相同,即可求出小宇从活动中心返家所用时间,将其与1比较后即可得出结论【解答】解:(1)点A的坐标为(1,22),点B的坐标为(3,22),活动中心与小宇家相距22千米,小宇在活动中心活动时间为
12、31=2小时(2220)÷5=0.4(小时)故答案为:22;2;0.4(2)根据题意得:y=225(x3)=5x+37(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),0.81,所用小宇12:00前能到家【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据离家距离=22速度×时间,找出y与x之间的函数关系式;(3)由爸爸开车的速度不变,求出小宇从活动中心返家所用时间五、在几何中的综合应用【例题】(2016贵州毕节3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH若BE:EC=2:1
13、,则线段CH的长是()A3 B4 C5 D6【考点】正方形的性质;翻折变换(折叠问题)【分析】根据折叠的性质可得DH=EH,在直角CEH中,若设CH=x,则DH=EH=9x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长【解答】解:由题意设CH=xcm,则DH=EH=(9x)cm,BE:EC=2:1,CE=BC=3cm在RtECH中,EH2=EC2+CH2,即(9x)2=32+x2,解得:x=4,即CH=4cm故选(B)【同步训练】(2017浙江湖州)已知正方形ABCD的对角线AC,BD相交于点O(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F若DFCE,求证
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学总复习资料 初中 数学 复习资料 2018 年中 复习方法 技巧 专题 结合 思想 解析
链接地址:https://www.taowenge.com/p-4965720.html
限制150内