《初中数学总复习资料》2018年中考数学复习难题突破专题十讲:2018年中考数学复习难题突破专题三:新定义新概念问题.doc
《《初中数学总复习资料》2018年中考数学复习难题突破专题十讲:2018年中考数学复习难题突破专题三:新定义新概念问题.doc》由会员分享,可在线阅读,更多相关《《初中数学总复习资料》2018年中考数学复习难题突破专题十讲:2018年中考数学复习难题突破专题三:新定义新概念问题.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、难题突破专题三新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型“新定义”型问题成为近年来中考数学压轴题的新亮点在复习中应重视学生应用新的知识解决问题的能力解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移类型1新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1=,则(2*3)*2=2【考点】1G:有理数的混合运算【分析】原式利用题中的新定
2、义计算即可得到结果【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2=2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形(1)如图1,等腰直角四边形ABCD,AB=BC,ABC=90°,若AB=CD=1,ABCD,求对角线BD的长若ACBD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长【考点】LO:四边形综合题【分析】(1)只要证明四边形ABCD是正方形即可解决问题;只要证明
3、ABDCBD,即可解决问题;(2)若EFBC,则AEEF,BFEF,推出四边形ABFE表示等腰直角四边形,不符合条件若EF与BC不垂直,当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)AB=AC=1,ABCD,S四边形ABCD是平行四边形,AB=BC,四边形ABCD是菱形,ABC=90°,四边形ABCD是正方形,BD=AC=(2)如图1中,连接AC、BDAB=BC,ACBD,ABD=CBD,BD=BD,ABDCBD,AD=CD(2)若EFBC,则AEEF,BFEF,四边形ABF
4、E表示等腰直角四边形,不符合条件若EF与BC不垂直,当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,AE=AB=5当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,BF=AB=5,DEBF,DE:BF=PD:PB=1:2,DE=2.5,AE=92.5=6.5,综上所述,满足条件的AE的长为5或6.5 解题方法点析 此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键类型2新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=例如:求点P0(0,0)到直线4x
5、+3y3=0的距离解:由直线4x+3y3=0知,A=4,B=3,C=3,点P0(0,0)到直线4x+3y3=0的距离为d=根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=x+的距离为4;问题2:已知:C是以点C(2,1)为圆心,1为半径的圆,C与直线y=x+b相切,求实数b的值;问题3:如图,设点P为问题2中C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出SABP的最大值和最小值【考点】FI:一次函数综合题【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题(3)求出圆心C到直线3x+4y+5=0的距离,求出
6、C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题【解答】解:(1)点P1(3,4)到直线3x+4y5=0的距离d=4,故答案为4(2)C与直线y=x+b相切,C的半径为1,C(2,1)到直线3x+4yb=0的距离d=1,=1,解得b=5或15(3)点C(2,1)到直线3x+4y+5=0的距离d=3,C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,SABP的最大值=×2×4=4,SABP的最小值=×2×2=2同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=axa为抛物线y=ax2+bx+c(a、b、c为
7、常数,a0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”已知抛物线y=x2x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C(1)填空:该抛物线的“梦想直线”的解析式为y=x+,点A的坐标为(2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将ACM以AM所在直线为对称轴翻折,点C的对称点为N,若AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若
8、不存在,请说明理由【考点】HF:二次函数综合题【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标;(2)过A作ADy轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AKx轴于点K,可证EFHACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标【解答】解:(1)抛物线y=x2
9、x+2,其梦想直线的解析式为y=x+,联立梦想直线与抛物线解析式可得,解得或,A(2,2),B(1,0),故答案为:y=x+;(2,2);(1,0);(2)如图1,过A作ADy轴于点D,在y=x2x+2中,令y=0可求得x=3或x=1,C(3,0),且A(2,2),AC=,由翻折的性质可知AN=AC=,AMN为梦想三角形,N点在y轴上,且AD=2,在RtAND中,由勾股定理可得DN=3,OD=2,ON=23或ON=2+3,N点坐标为(0,23)或(0,2+3);(3)当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AKx轴于点K,则有ACEF且AC=EF,ACK=EFH,在AC
10、K和EFH中ACKEFH(AAS),FH=CK=1,HE=AK=2,抛物线对称轴为x=1,F点的横坐标为0或2,点F在直线AB上,当F点横坐标为0时,则F(0,),此时点E在直线AB下方,E到y轴的距离为EHOF=2=,即E点纵坐标为,E(1,);当F点的横坐标为2时,则F与A重合,不合题意,舍去;当AC为平行四边形的对角线时,C(3,0),且A(2,2),线段AC的中点坐标为(2.5,),设E(1,t),F(x,y),则x1=2×(2.5),y+t=2,x=4,y=2t,代入直线AB解析式可得2t=×(4)+,解得t=,E(1,),F(4,);综上可知存在满足条件的点F,
11、此时E(1,)、F(0,)或E(1,)、F(4,) 解题方法点析 解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题对于几何新概念弄清楚条件和结论是至关重要的类型3新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=(x0)的图象上,点B在直线y2=kx+1+k(k为常数,且k0)上若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”请问这两个函数图象上的“友好点”对数的情况为()A有1对或2对B只有1对C只有2对D有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,)关于原点的对称点B(a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学总复习资料 初中 数学 复习资料 2018 年中 复习 难题 突破 专题 定义 新概念 问题
链接地址:https://www.taowenge.com/p-4965722.html
限制150内