《初中数学总复习资料》2018年中考数学突破瓶颈疑难解答专题八讲:2018年中考数学突破瓶颈疑难解答专题第三讲设计操作型问题.docx
《《初中数学总复习资料》2018年中考数学突破瓶颈疑难解答专题八讲:2018年中考数学突破瓶颈疑难解答专题第三讲设计操作型问题.docx》由会员分享,可在线阅读,更多相关《《初中数学总复习资料》2018年中考数学突破瓶颈疑难解答专题八讲:2018年中考数学突破瓶颈疑难解答专题第三讲设计操作型问题.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题第三讲方案设计与动手操作型问题【要点梳理】方案设计型问题是设置一个实际问题的情景,给出若干信息,提出解决问题的要求,寻求恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案最优方案设计型问题主要考查学生的动手操作能力和实践能力方案设计型问题,主要有以下几种类型:(1)讨论材料,合理猜想设置一段讨论材料,让考生进行科学的判断、推理、证明;(2)画图设计,动手操作给出图形和若干信息,让考生按要求对图形进行分割或设计美观的图案;(3)设计方案,比较择优给出问题情境,提出要求,让考生寻求最佳解决方案操作型问题是指通过动手实验,获得数学结论的研究性活动这类问题需要动手操作、合理猜想和验
2、证,有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯常见类型有:(1)图形的分割与拼接;(2)图形的平移、旋转与翻折;(3)立体图形与平面图形之间的相互转化【学法指导】三个解题策略(1)方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数(2)择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性(3)操作型问题:大体可分为三类,即图案设计类、图形拼接类、图形分割类等
3、对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程【考点解析】统计测量型方案设计某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数;方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数;方案3:所有评委所给分的中位数;方案4:所有评委所给分的众数为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统
4、计试验下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分解:(1)方案1最后得分:×(3.27.07.83×83×8.49.8)7.7;方案2最后得分:×(7.07.83×83×8.4)8;方案3最后得分:8;方案4最后得分:8或8.4(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案;又因为方案4中的众数有两个,从而使众数失去了实际意义,所以方案4不适合作为最后
5、得分的方案【点评】通过计算得出各个方案的数值,逐一比较利用方程(组)、不等式、函数进行方案设计(2017黑龙江佳木斯)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(
6、3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用【分析】(1)根据总利润=三种蔬菜的利润之和,计算即可;(2)由题意,列出不等式组即可解决问题;(3)由题意,列出二元一次不等式,求出整数解即可;【解答】解:(1)由题意y=x+1.5×2x+2=2x+200(2)由题意2x+200180,解得x10,x8,8x10x为整数,x=8,9,10有3种种植方案,方案一:种植西红
7、柿8公顷、马铃薯76公顷、青椒16公顷方案二:种植西红柿9公顷、马铃薯73公顷、青椒18公顷方案三:种植西红柿10公顷、马铃薯70公顷、青椒20公顷(3)y=2x+200,20,x=8时,利润最大,最大利润为184万元设投资A种类型的大棚a个,B种类型的大棚b个,由题意5a+8b×184,5a+8b23,a=1,b=1或2,a=2,b=1,a=3,b=1,可以投资A种类型的大棚1个,B种类型的大棚1个,或投资A种类型的大棚1个,B种类型的大棚2个,或投资A种类型的大棚2个,B种类型的大棚1个,或投资A种类型的大棚3个,B种类型的大棚1个图形类方案设计在数学活动课上,王老师发给每位同学
8、一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告名称四等分圆的面积方案方案一方案二方案三选用的工具带刻度的三角板带刻度的三角板、量角器、圆规带刻度的三角板、圆规画出示意图简述设计方案作O两条互相垂直的直径AB,CD,将O的面积分成相等的四份.(1)以点O为圆心,以3个单位长度为半径作圆;(2)在大O上依次取三等分点A,B,C;(3)连接OA、OB、OC.则小圆O与三等份圆环把O的面积四等分(4
9、)作O的一条直径AB;(5)分别以OA、OB的中点为圆心,以3个单位长度为半径作O1、O2;则O1、O2和O中剩余的两部分把O的面积四等分指出对称性既是轴对称图形又是中心对称图形轴对称图形既是轴对称图形又是中心对称图形【点评】本题主要考查了利用轴对称设计图案以及轴对称图形、中心对称图形的性质,熟练利用扇形面积公式是解题关键图形的分割与拼接(2017齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2cm,4cm【考点】PC:图形的剪拼【分析】利用等腰三角形的性质,
10、进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长【解答】解:如图:,过点A作ADBC于点D,ABC边AB=AC=10cm,BC=12cm,BD=DC=6cm,AD=8cm,如图所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图所示:AD=8cm,连接BC,过点C作CEBD于点E,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC=2cm,故答案为:10cm,2cm,4cm图形的平移、旋转与翻折(2017浙江湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点从一个格点移
11、动到与之相距的另一个格点的运动称为一次跳马变换例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A13B14C15D16【考点】RA:几何变换的类型;KQ:勾股定理【分析】根据从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,计算出按ACF的方向连续变换10次后点M的位置,再根据点N的位置进行适当的变换,即可得到变换总次数【解答】解:如图1,连接AC,CF,则AF=3,两次变换相当于向右移动3格,向
12、上移动3格,又MN=20,20÷3=,(不是整数)按ACF的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B立体图形与平面图形之间的相互转化我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该
13、圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺)故答案为:25【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解【真题训练】训练一:(2017湖北荆州)如图,在5×5的正方形网格中有一条线段AB
14、,点A与点B均在格点上请在这个网格中作线段AB的垂直平分线要求:仅用无刻度直尺,且不能用直尺中的直角;保留必要的作图痕迹训练二:(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案训练三:把一边长为40 cm的正方形硬纸板进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计)(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学总复习资料 初中 数学 复习资料 2018 年中 突破 瓶颈 疑难解答 专题 第三 设计 操作 问题
链接地址:https://www.taowenge.com/p-4965895.html
限制150内