《初中数学总复习资料》2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第12讲 一次函数综合应用.docx
《《初中数学总复习资料》2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第12讲 一次函数综合应用.docx》由会员分享,可在线阅读,更多相关《《初中数学总复习资料》2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第12讲 一次函数综合应用.docx(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十二讲一次函数的综合应用知识回顾1.一次函数和一元一次方程的关系一次函数ykxb的函数值为0时,相应的自变量的值即为方程kxb0的 ;若从图象上来看,则可看做函数ykxb的图象与x轴的交点的 ,即为方程kxb0的解2.一次函数和一元一次不等式的关系任何一元一次不等式都可以转化为类似axb0或axb0的形式,所以解一元一次不等式可以看做:当一次函数yaxb的值大(小)于0时,求自变量相应的取值范围;反之,求一次函数yaxb的值何时大(小)于0时,只要求出不等式axb0或axb0的解集即可如图1,一次函数的图象与轴交于点(0,0)当它在轴上方的部分时,对应不等式为 ,其解为 ;当它在轴下方的部分
2、时,对应不等式为 ,其解为 . 如图2,一次函数与的图象交点的横坐标为0当的图象在上方的部分时,对应不等式为 ,其解为 ;当的图象在下方的部分时,对应不等式为 ,其解为 .3.一次函数的实际应用(1)通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看 分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助(2)一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着
3、广泛的应用在实际问题中,当自变量的取值范围受到一定的限制时,函数ykxb(k0)的图象就不再是一条直线要根据实际情况进行分析,其图象可能是 等等基础检测1. 如图,大小两个正方形在同一水平线上,小正方形从图的位置开始,匀速向右平移,到图的位置停止运动如果设运动时间为x,大小正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()ABCD2. (2017山东聊城)端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A乙队比甲队提前0.25min到达终点B当乙队
4、划行110m时,此时落后甲队15mC0.5min后,乙队比甲队每分钟快40mD自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min3. (2017乌鲁木齐)一次函数y=kx+b(k,b是常数,k0)的图象,如图所示,则不等式kx+b0的解集是()Ax2 Bx0 Cx0 Dx24. (2017湖北随州)如图,AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,AOB=30°,要使PM+PN最小,则点P的坐标为 5. (2017宁夏)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,
5、具体情况如下表所示: 购进数量(件)购进所需费用(元) AB第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润6. (2017宁夏)为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费为对基本用水量进行决策,随机抽查2000户居
6、民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每月用水量(m3)32及其以下3334353637383940414243及其以上户数(户)200160180220240210190100170120100110(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月
7、用水量是多少立方米?考点解析知识点一、函数图象的交点【例题】(2016·重庆市B卷·4分)为增强学生体质,某中学在体育课中加强了学生的长跑训练在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第120秒【考点】一次函数的应用【分析】分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间【解答】解:设直线OA的解析式为y=kx,代入A(200,800)得800=200k,解得k=4,故直线OA的解析式为y=4x,设BC的解析
8、式为y1=k1x+b,由题意,得,解得:,BC的解析式为y1=2x+240,当y=y1时,4x=2x+240,解得:x=120则她们第一次相遇的时间是起跑后的第120秒故答案为120【点评】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键【变式】直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()Am-1Bm1C-1m1D-1m1【答案】C【解析】联立,解得,交点在第四象限,解不等式得,m-1,解不等式得,m1,所以,m的取值范围是-1m1故选C知识点二、一次函数与一元一次不等式【例题
9、】(2015辽宁辽阳)如图,直线与(且a,b为常数)的交点坐标为(3,1),则关于x的不等式的解集为( )Ax1 Bx3 Cx1 Dx3【答案】D【分析】根据图形即可得到不等式的解集【解析】从图象得到,当x3时,的图象对应的点在函数的图象上面,不等式的解集为x3故选D【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合要注意数形结合,直接从图中得到结论【方法技巧规律】一次函数与不等式(组)的关系及数形结合思想的应用解决此类
10、问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合【变式】(2016·广西百色·3分)直线y=kx+3经过点A(2,1),则不等式kx+30的解集是()Ax3 Bx3 Cx3 Dx0【考点】一次函数与一元一次不等式【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+30即可【解答】解:y=kx+3经过点A(2,1),1=2k+3,解得:k=1,一次函数解析式为:y=x+3,x+30,解得:x3故选A知识点三、方案设计【例题】(2016·湖北荆门·12分)A城有某种农机30台,B城有该农机40台,现要将这些农机全部
11、运往C,D两乡,调运任务承包给某运输公司已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a200)作为优惠,其它费用不变,如何调运,使总费用最少?【考点】一次函数的应用;一元一次不等式的应
12、用【分析】(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30x吨,B城运往C乡的化肥为34x吨,B城运往D乡的化肥为40(34x)吨,从而可得出W与x大的函数关系(2)根据题意得140x+1254016460求得28x30,于是得到有3种不同的调运方案,写出方案即可;(3)根据题意得到W=x+12540,所以当a=200时,y最小=60x+12540,此时x=30时y最小=10740元于是得到结论【解答】解:(1)W=250x+200(30x)+150(34x)+240(6+x)=140x+12540(0x30);(2)根据题意得140x+1254016460,x28,x30,28
13、x30,有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台,(3)W=x+200(30x)+150(34x)+240(6+x)=x+12540,所以当a=200时,y最小=60x+12540,此时x=30时y最小=10740元此时的方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台【变式】(2015四川凉山州第22题8分)201
14、5年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车
15、方案?哪种租车方案费用最低,最低费用是多少?【解析】一元一次不等式组的应用;二元一次方程组的应用(1)首先根据题意,设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,然后根据“空列”项目总共需要60.8亿元,以及每千米水上建设费用比陆地建设费用多0.2亿元,列出二元一次方程组,再解方程组,求出每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元即可(2)首先根据题意,设每天租m辆大车,则需要租10m辆小车,然后根据每天至少需要运送沙石1600m3,以及每天租车的总费用不超过9300元,列出一元一次不等式组,判断出施工方有几种租车方案;最后分别求出每种租车方案的费用
16、是多少,判断出哪种租车方案费用最低,最低费用是多少即可【解答】解:(1)设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,则,解得所以每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元答:每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元(2)设每天租m辆大车,则需要租10m辆小车,则,施工方有3种租车方案:租5辆大车和5辆小车;租6辆大车和4辆小车;租7辆大车和3辆小车;租5辆大车和5辆小车时,租车费用为:1000×5+700×5=5000+3500=8500(元)租6辆大车和4辆小车时,租车
17、费用为:1000×6+700×4=6000+2800=8800(元)租7辆大车和3辆小车时,租车费用为:1000×7+700×3=7000+2100=9100(元)850088009100,租5辆大车和5辆小车时,租车费用最低,最低费用是8500元【点评】(1)此题主要考查了一元一次不等式组的应用,要熟练掌握,解答此题的关键是要明确:一元一次不等式组的应用主要是列一元一次不等式组解应用题。知识点四、分段函数【例题】(2017青海西宁)首条贯通丝绸之路经济带的高铁线宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸
18、合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,根据图象进行一下探究:【信息读取】(1)西宁到西安两地相距1000千米,两车出发后3小时相遇;(2)普通列车到达终点共需12小时,普通列车的速度是千米/小时【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?【考点】FH:一次函数的应用【分析】(1)由x=0时y=1000及x=3时y=0的实际意义可得答案;(2)根据x=1
19、2时的实际意义可得,由速度=可得答案;(3)设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列出3小时行驶的路程=1000”列方程求解可得;(4)先求出t小时普通列车行驶的路程,继而可得答案【解答】解:(1)由x=0时,y=1000知,西宁到西安两地相距1000千米,由x=3时,y=0知,两车出发后3小时相遇,故答案为:1000,3;(2)由图象知x=t时,动车到达西宁,x=12时,普通列车到达西安,即普通列车到达终点共需12小时,普通列车的速度是=千米/小时,故答案为:12,;(3)设动车的速度为x千米/小时,根据题意,得:3x+3×=1000,解得:x=250,答:动
20、车的速度为250千米/小时;(4)t=4(小时),4×=(千米),1000=(千米),此时普通列车还需行驶千米到达西安【变式】(2015青海西宁第27题10分)兰新铁路的通车,圆了全国人民的一个梦,坐上火车去观赏青海门源百里油菜花海,感受大美青海独特的高原风光,暑假某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生必须乘坐在同一列高铁上,根据报名人数,若都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元:西宁到门源的火车票价格如下表运行区间票价上车站下车站一等座二等座西宁门源36元30元(1)参加社会实践的学生、老师各有多少人?(2)由于各种原
21、因,二等座火车票单程只能买x张(参加社会实践的学生人数x参加社会实践的总人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐并且总费用最低的前提下,请你写出购买火车票的总费用(单程)y与x之间的函数关系式【解析】一次函数的应用;二元一次方程组的应用(1)设参加社会实践的学生有m人,老师有n人,根据都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元,列出方程组即可;(2)当50x65时,费用最低的购票方案为:学生都买学生票共50张,(x50)名老师买二等座火车票,(65x)名老师买一等座火车票,然后列出函数关系式即可【解答】解;(1)设参加社会实践的学生有m
22、人,老师有n人若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得:,解得:答:参加社会实践的学生、老师分别为50人、15人;(2)由(1)知所有参与人员总共有65人,其中学生有50人当50x65时,费用最低的购票方案为:学生都买学生票共50张,(x50)名老师买二等座火车票,(65x)名老师买一等座火车票火车票的总费用(单程)y与x之间的函数关系式为:y=30×0.8×50+30(x50)+36(65x)即y=6x+2040(50x65)答:购买火车票的总费用(单程)y与x之间的函数关系式是y=6x+2040(50x65)【点评】本题主要考查的是二元
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学总复习资料2018年数学中考第一轮复习讲义:2018年数学中考第一轮复习讲义:第12讲一次函数综合应用
链接地址:https://www.taowenge.com/p-4966496.html
限制150内